Based on data observed from 1989 to 1998 in the Ziwuling survey station, changes of soil erosion and soil physico-mechanical properties were studied after forestland reclamation. When the man-induced fac...Based on data observed from 1989 to 1998 in the Ziwuling survey station, changes of soil erosion and soil physico-mechanical properties were studied after forestland reclamation. When the man-induced factors changed the eco-environment by reclaiming forestlands, the intensity of man-made soil erosion in reclaimed lands was 1,000 times more than that of natural erosion in forestlands. From the analysis of soil physical and mechanical properties, the clay content and physical clay content decreased 2.74% and 3.01% respectively, and the >0.25 mm water stable aggregate content decreased 58.7%, the soil unit weight increased and the soil shear strength decreased, all of which were easier to cause soil erosion. The results of the correlation analysis showed that the >0.25 mm water stable aggregate content was the greatest influencing factor on soil erosion, the partial correlated coefficient was 0.9728, and then were soil coarse grain and soil shear strength, the partial correlated coefficients being 0.8879 and 0.6020 respectively. The relationships between the >0.25 mm water stable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first and seventh years were the turning years of the soil erosion intensity after the forestland reclamation. The degenerative eroded soil and eco-environment formed the peculiar erosion environment, which aggravated the soil erosion rapidly.展开更多
基金National Natural Science Foundation of China No.19832060
文摘Based on data observed from 1989 to 1998 in the Ziwuling survey station, changes of soil erosion and soil physico-mechanical properties were studied after forestland reclamation. When the man-induced factors changed the eco-environment by reclaiming forestlands, the intensity of man-made soil erosion in reclaimed lands was 1,000 times more than that of natural erosion in forestlands. From the analysis of soil physical and mechanical properties, the clay content and physical clay content decreased 2.74% and 3.01% respectively, and the >0.25 mm water stable aggregate content decreased 58.7%, the soil unit weight increased and the soil shear strength decreased, all of which were easier to cause soil erosion. The results of the correlation analysis showed that the >0.25 mm water stable aggregate content was the greatest influencing factor on soil erosion, the partial correlated coefficient was 0.9728, and then were soil coarse grain and soil shear strength, the partial correlated coefficients being 0.8879 and 0.6020 respectively. The relationships between the >0.25 mm water stable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first and seventh years were the turning years of the soil erosion intensity after the forestland reclamation. The degenerative eroded soil and eco-environment formed the peculiar erosion environment, which aggravated the soil erosion rapidly.