As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted ele...As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted electrodeposition is used to improve the surface quality and properties of Zn–Ni–Mo coatings,with investigation of how laser energy in the range of 0–21.1μJ affects their element content,surface morphology,crystal phase,microhardness,residual internal stress,and corrosion resistance.The laser irradiation accelerates the electrodeposition,refines the grain size,improves the hydrogen adsorption,and reduces the residual tensile stress,and a laser energy of 15.4μJ gives the highest Ni and Mo contents and the lowest Zn content,as well as the optimum surface morphology,microhardness,residual internal stress,and corrosion resistance of the coating.展开更多
Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient ha...Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient had burns not only on the body surface but also in the respiratory tract and esophagus,adding to the difficulty of treatment.Multidisciplinary consultation and cooperation led to the development of a treatment plan for the patient,which included tracheotomy,respiratory management,endoscopic therapy,infection control,and psychological support.To our knowledge,this is the first report of molten aluminum-induced burns involving the face,neck,respiratory tract,esophagus,and eyes.We also describe our experience with multidisciplinary treatment for the management of molten aluminum burns.展开更多
In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertain...In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.展开更多
This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-tra...This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry,bitumen reflectance,thermal conductivity of rocks,paleotemperature recovery,and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata.The Triassic AFT data have a pooled age of^180±7 Ma with one age peak and P(χ2)=86%.The average value of corrected apatite(U-Th)/He age of two Permian sandstones is^168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is^231±14 Ma.Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%,1.57%and^210℃,~196℃respectively.After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas,the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1)A cooling stage(~163 Ma to^140 Ma)with temperatures ranging from^132℃to^53℃and a cooling rate of^3℃/Ma,an erosion thickness of^1900 m and an uplift rate of^82 m/Ma;(2)A cooling stage(~140 Ma to^52 Ma)with temperatures ranging from^53℃to^47℃and a cooling rate less than^0.1℃/Ma,an erosion thickness of^300 m and an uplift rate of^3 m/Ma;(3)(~52 Ma to^8 Ma)with^47℃to^43℃and^0.1℃/Ma,an erosion thickness of^500 m and an uplift rate of^11 m/Ma;(3)(~8 Ma to present)with^43℃to^20℃and^3℃/Ma,an erosion thickness of^650 m and an uplift rate of^81 m/Ma.The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift,and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift.The early Eocene at^52 Ma and the late Miocene at^8 Ma,as two significant turning points after which both the rate of uplift and the rate of temperature changed rapidly,were two key time for the uplift-cooling history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.展开更多
Dynamic self-heating effect(SHE)of silicon-on-insulator(SOI)MOSFET is comprehensively evaluated by ultrafast pulsed I-V measurement in this work.It is found for the first time that the SHE complete heating response an...Dynamic self-heating effect(SHE)of silicon-on-insulator(SOI)MOSFET is comprehensively evaluated by ultrafast pulsed I-V measurement in this work.It is found for the first time that the SHE complete heating response and cooling response of SOI MOSFETs are conjugated,with two-stage curves shown.We establish the effective thermal transient response model with stage superposition corresponding to the heating process.The systematic study of SHE dependence on workload shows that frequency and duty cycle have more significant effect on SHE in first-stage heating process than in the second stage.In the first-stage heating process,the peak lattice temperature and current oscillation amplitude decrease by more than 25 K and 4%with frequency increasing to 10 MHz,and when duty cycle is reduced to 25%,the peak lattice temperature drops to 306 K and current oscillation amplitude decreases to 0.77%.Finally,the investigation of two-stage(heating and cooling)process provides a guideline for the unified optimization of dynamic SHE in terms of workload.As the operating frequency is raised to GHz,the peak temperature depends on duty cycle,and self-heating oscillation is completely suppressed.展开更多
There are only eight approved small molecule antiviral drugs for treating COVID-19.Among them,four are nucleotide analogues(remdesivir,JT001,molnupiravir,and azvudine),while the other four are protease inhibitors(nirm...There are only eight approved small molecule antiviral drugs for treating COVID-19.Among them,four are nucleotide analogues(remdesivir,JT001,molnupiravir,and azvudine),while the other four are protease inhibitors(nirmatrelvir,ensitrelvir,leritrelvir,and simnotrelvir-ritonavir).Antiviral resistance,unfavourable drug‒drug interaction,and toxicity have been reported in previous studies.Thus there is a dearth of new treatment options for SARS-CoV-2.In this work,a three-tier cell-based screening was employed to identify novel compounds with anti-SARS-CoV-2 activity.One compound,designated 172,demonstrated broad-spectrum antiviral activity against multiple human pathogenic coronaviruses and different SARS-CoV-2 variants of concern.Mechanistic studies validated by reverse genetics showed that compound 172 inhibits the 3-chymotrypsin-like protease(3CLpro)by binding to an allosteric site and reduces 3CLpro dimerization.A drug synergistic checkerboard assay demonstrated that compound 172 can achieve drug synergy with nirmatrelvir in vitro.In vivo studies confirmed the antiviral activity of compound 172 in both Golden Syrian Hamsters and K18 humanized ACE2 mice.Overall,this study identified an alternative druggable site on the SARS-CoV-23CLpro,proposed a potential combination therapy with nirmatrelvir to reduce the risk of antiviral resistance and shed light on the development of allosteric protease inhibitors for treating a range of coronavirus diseases.展开更多
The development of novel synthons and efficient methods to synthesize chiral polycyclic indoles has been a hot topic in organic synthesis and medicinal chemistry owing to their broad applications in medicines,pesticid...The development of novel synthons and efficient methods to synthesize chiral polycyclic indoles has been a hot topic in organic synthesis and medicinal chemistry owing to their broad applications in medicines,pesticides,and other functional molecules.Here,we disclosed novel indolyl substituted metal-allyl zwitterionic intermediates through the decarboxylation of conveniently available vinyl indoloxazolidones,which could be regarded as two types of dipolar species through the anionic delocalization.The palladium-π-allyl species tended to serve as an all-carbon 1,3-dipole in the asymmetric[3+2]cycloaddition with electrondeficient alkenes,which furnished polysubstituted cyclopenta[b]indoles with high regio-and stereoselectivities.Meanwhile,the iridium-π-allyl species was recognized as an aza-1,3-dipole in asymmetric[3+2]cycloaddition with in situ generated C1 ammonium enolates,affording pyrrolo[1,2-α]indoles with high diastereo-and enantioselectivities.In addition,the dipolar cycloadditions could be easily scaled-up and several synthetic transformations of the cycloadducts were demonstrated for the rapid synthesis of diverse chiral polycyclic indoles.展开更多
Analysis of tectonothermal history of the Yanchang Formation in the western Weibei Uplift and in the northwestern Weihe Basin can reconstruct the cooling history of the southwest most remained Upper Triassic source ro...Analysis of tectonothermal history of the Yanchang Formation in the western Weibei Uplift and in the northwestern Weihe Basin can reconstruct the cooling history of the southwest most remained Upper Triassic source rock of the North China Plate. Apatite fission-track(AFT) and(U-ThSm)/He(AHe) analysis were used to recover the cooling and uplift history of the Upper Triassic here. Ten sandstones from the Middle–Upper Triassic strata yield AFT ages between 179.8 ± 7.4 and 127.6 ± 8.1 Ma. AHe ages of two sandstones have the value of 37.7 ± 2.3–131.1 ± 8.1 and 45.7 ± 2.8–83.5 ± 5.2 Ma. Time-temperature modeling results showed that tectonothermal history of the Yanchang Formation was initially different in time-space relationships but then became almost identical through time followed by different cooling rate. Modeling results of the Triassic strata in the Qianyang area and the Yaojiagou area revealed three different uplift-cooling stages commencing in the Late Jurassic at ~165 Ma and in Early Cretaceous at ~110 Ma, respectively, both followed by first similar cooling histories to the Early Miocene at ~20 – 23 Ma and then different since the Late Miocene. Uplift-cooling rate since the Late Miocene at ~8 Ma were different between the Western Weibei Uplift and the Northwestern Weihe Basin. The timing, cooling-uplift rates of the Yaojiagou area, which was mainly controlled by movements related to the Liupanshan Mountains, the Qinling Orogens and the Weibei Uplift, had the earliest onset of uplift-cooling for the Upper Triassic series compared to other regions within the Weibei Uplift. Cooling paths for the Upper Triassic series became uniform regionally in the Early Cretaceous marking a key time for the tectonothermal evolutionary history of Upper Triassic series in the southwestern North China Plate.展开更多
A Lagrange dynamic model is established based on small-angle approximation to improve the simulation model for shipborne helicopter landing collision.To describe fuselage motion effectively,the proposed model consider...A Lagrange dynamic model is established based on small-angle approximation to improve the simulation model for shipborne helicopter landing collision.To describe fuselage motion effectively,the proposed model considers ship motion,the interaction of the tires with the deck,and tire slippage.A mechanism of sliding motion is built,and a real-time reliability analysis of the algorithm is implemented to validate the proposed model.Numerical simulations are also conducted under different operation conditions.Results show that the proposed dynamic model can simulate the collision motion of helicopter landing in real time.Several suggestions for helicopter pilot landing are likewise provided.展开更多
Autonomous driving and self-driving vehicles have become the most popular selection for customers for their convenience.Vehicle angle prediction is one of the most prevalent topics in the autonomous driving industry,t...Autonomous driving and self-driving vehicles have become the most popular selection for customers for their convenience.Vehicle angle prediction is one of the most prevalent topics in the autonomous driving industry,that is,realizing real-time vehicle angle prediction.However,existing methods of vehicle angle prediction utilize only single-modal data to achieve model prediction,such as images captured by the camera,which limits the performance and efficiency of the prediction system.In this paper,we present Emma,a novel vehicle angle prediction strategy that achieves multi-modal prediction and is more efficient.Specifically,Emma exploits both images and inertial measurement unit(IMU)signals with a fusion network for multi-modal data fusion and vehicle angle prediction.Moreover,we design and implement a few-shot learning module in Emma for fast domain adaptation to varied scenarios(e.g.,different vehicle models).Evaluation results demonstrate that Emma achieves overall 97.5%accuracy in predicting three vehicle angle parameters(yaw,pitch,and roll),which outperforms traditional single-modalities by approximately 16.7%-36.8%.Additionally,the few-shot learning module presents promising adaptive ability and shows overall 79.8%and 88.3%accuracy in 5-shot and 10-shot settings,respectively.Finally,empirical results show that Emma reduces energy consumption by 39.7%when running on the Arduino UNO board.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51905226,52075227,and 52105449)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210755)the Postdoctoral Foundation of Jiangsu Province(Grant No.2021K264B).
文摘As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted electrodeposition is used to improve the surface quality and properties of Zn–Ni–Mo coatings,with investigation of how laser energy in the range of 0–21.1μJ affects their element content,surface morphology,crystal phase,microhardness,residual internal stress,and corrosion resistance.The laser irradiation accelerates the electrodeposition,refines the grain size,improves the hydrogen adsorption,and reduces the residual tensile stress,and a laser energy of 15.4μJ gives the highest Ni and Mo contents and the lowest Zn content,as well as the optimum surface morphology,microhardness,residual internal stress,and corrosion resistance of the coating.
基金supported by the Biomaterials and Regenerative Medicine Institute Cooperative Research Project at Shanghai Jiao Tong University School of Medicine(grant no.2022LHA05)the Shanghai Clinical Research Center of Plastic and Reconstructive Surgery funded by the Science and Technology Commission of Shanghai Municipality(grant no.22Mc1940300).
文摘Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient had burns not only on the body surface but also in the respiratory tract and esophagus,adding to the difficulty of treatment.Multidisciplinary consultation and cooperation led to the development of a treatment plan for the patient,which included tracheotomy,respiratory management,endoscopic therapy,infection control,and psychological support.To our knowledge,this is the first report of molten aluminum-induced burns involving the face,neck,respiratory tract,esophagus,and eyes.We also describe our experience with multidisciplinary treatment for the management of molten aluminum burns.
基金the National Science Foundation of China (No.91738201, 61971440)the Jiangsu Province Basic Research Project (No.BK20192002)+1 种基金the China Postdoctoral Science Foundation (No.2018M632347)the Natural Science Research of Higher Education Institutions of Jiangsu Province (No.18KJB510030)。
文摘In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.
基金the Project “Constraints on lithospheric dynamic evolution and hydrocarbon accumulation from Late Mesozoic paleogeothermal field in Ordos and Qinshui Basins supported by NSFC (41630312)”the “Palaeogeothermal and uplift-related cooling history of complex structure zone, Restricted by thermochronology by NSFC (41602128)”+2 种基金the NSFC (41703055), the “research Grants by China Geological Survey (DD20160060)”the “Fundamental Research Funds for the Central Universities, CHD (300102279206, 300102278204)”the fund from China Scholarship Council (201806565017)
文摘This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry,bitumen reflectance,thermal conductivity of rocks,paleotemperature recovery,and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata.The Triassic AFT data have a pooled age of^180±7 Ma with one age peak and P(χ2)=86%.The average value of corrected apatite(U-Th)/He age of two Permian sandstones is^168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is^231±14 Ma.Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%,1.57%and^210℃,~196℃respectively.After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas,the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1)A cooling stage(~163 Ma to^140 Ma)with temperatures ranging from^132℃to^53℃and a cooling rate of^3℃/Ma,an erosion thickness of^1900 m and an uplift rate of^82 m/Ma;(2)A cooling stage(~140 Ma to^52 Ma)with temperatures ranging from^53℃to^47℃and a cooling rate less than^0.1℃/Ma,an erosion thickness of^300 m and an uplift rate of^3 m/Ma;(3)(~52 Ma to^8 Ma)with^47℃to^43℃and^0.1℃/Ma,an erosion thickness of^500 m and an uplift rate of^11 m/Ma;(3)(~8 Ma to present)with^43℃to^20℃and^3℃/Ma,an erosion thickness of^650 m and an uplift rate of^81 m/Ma.The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift,and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift.The early Eocene at^52 Ma and the late Miocene at^8 Ma,as two significant turning points after which both the rate of uplift and the rate of temperature changed rapidly,were two key time for the uplift-cooling history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.
文摘Dynamic self-heating effect(SHE)of silicon-on-insulator(SOI)MOSFET is comprehensively evaluated by ultrafast pulsed I-V measurement in this work.It is found for the first time that the SHE complete heating response and cooling response of SOI MOSFETs are conjugated,with two-stage curves shown.We establish the effective thermal transient response model with stage superposition corresponding to the heating process.The systematic study of SHE dependence on workload shows that frequency and duty cycle have more significant effect on SHE in first-stage heating process than in the second stage.In the first-stage heating process,the peak lattice temperature and current oscillation amplitude decrease by more than 25 K and 4%with frequency increasing to 10 MHz,and when duty cycle is reduced to 25%,the peak lattice temperature drops to 306 K and current oscillation amplitude decreases to 0.77%.Finally,the investigation of two-stage(heating and cooling)process provides a guideline for the unified optimization of dynamic SHE in terms of workload.As the operating frequency is raised to GHz,the peak temperature depends on duty cycle,and self-heating oscillation is completely suppressed.
基金National Natural Science Foundation of China(NSFC)/Research Grants Council(RGC)Joint Research Scheme(N_HKU767/22 and 82261160398)Health and Medical Research Fund(COVID190121)+13 种基金the Food and Health Bureau,The Government of the Hong Kong Special Administrative Regionthe National Natural Science Foundation of China(32322087,32300134,and 82272337)Guangdong Natural Science Foundation(2023A1515012907)Health@-InnoHK,Innovation and Technology Commission,the Government of the Hong Kong Special Administrative Regionthe Collaborative Research Fund(C7060-21G and C7002-23Y)and Theme-Based Research Scheme(T11-709/21-N)of the Research Grants Council,The Government of the Hong Kong Special Administrative RegionPartnership Programme of Enhancing Laboratory Surveillance and Investigation of Emerging Infectious Diseases and Antimicrobial Resistance for the Department of Health of the Hong Kong Special Administrative Region GovernmentSanming Project of Medicine in Shenzhen,China(SZSM201911014)the High Level-Hospital Program,Health Commission of Guangdong Province,Chinathe research project of Hainan Academician Innovation Platform(YSPTZX202004)Emergency Collaborative Project of Guangzhou Laboratory(EKPG22-01)and the National Key R&D Program of China(projects 2021YFC0866100 and 2023YFC3041600)The University of Hong Kong Seed Fund for Collaborative Research(2207101537)and Hunan University(521119400156)donations of Providence Foundation Limited(in memory of the late Lui Hac Minh).
文摘There are only eight approved small molecule antiviral drugs for treating COVID-19.Among them,four are nucleotide analogues(remdesivir,JT001,molnupiravir,and azvudine),while the other four are protease inhibitors(nirmatrelvir,ensitrelvir,leritrelvir,and simnotrelvir-ritonavir).Antiviral resistance,unfavourable drug‒drug interaction,and toxicity have been reported in previous studies.Thus there is a dearth of new treatment options for SARS-CoV-2.In this work,a three-tier cell-based screening was employed to identify novel compounds with anti-SARS-CoV-2 activity.One compound,designated 172,demonstrated broad-spectrum antiviral activity against multiple human pathogenic coronaviruses and different SARS-CoV-2 variants of concern.Mechanistic studies validated by reverse genetics showed that compound 172 inhibits the 3-chymotrypsin-like protease(3CLpro)by binding to an allosteric site and reduces 3CLpro dimerization.A drug synergistic checkerboard assay demonstrated that compound 172 can achieve drug synergy with nirmatrelvir in vitro.In vivo studies confirmed the antiviral activity of compound 172 in both Golden Syrian Hamsters and K18 humanized ACE2 mice.Overall,this study identified an alternative druggable site on the SARS-CoV-23CLpro,proposed a potential combination therapy with nirmatrelvir to reduce the risk of antiviral resistance and shed light on the development of allosteric protease inhibitors for treating a range of coronavirus diseases.
基金the National Natural Science Foundation of China(21901072)the China Postdoctoral Science Foundation(2019T120310)Shanghai Sailing Program(18YF140560)。
文摘The development of novel synthons and efficient methods to synthesize chiral polycyclic indoles has been a hot topic in organic synthesis and medicinal chemistry owing to their broad applications in medicines,pesticides,and other functional molecules.Here,we disclosed novel indolyl substituted metal-allyl zwitterionic intermediates through the decarboxylation of conveniently available vinyl indoloxazolidones,which could be regarded as two types of dipolar species through the anionic delocalization.The palladium-π-allyl species tended to serve as an all-carbon 1,3-dipole in the asymmetric[3+2]cycloaddition with electrondeficient alkenes,which furnished polysubstituted cyclopenta[b]indoles with high regio-and stereoselectivities.Meanwhile,the iridium-π-allyl species was recognized as an aza-1,3-dipole in asymmetric[3+2]cycloaddition with in situ generated C1 ammonium enolates,affording pyrrolo[1,2-α]indoles with high diastereo-and enantioselectivities.In addition,the dipolar cycloadditions could be easily scaled-up and several synthetic transformations of the cycloadducts were demonstrated for the rapid synthesis of diverse chiral polycyclic indoles.
基金supported by the National Natural Science Foundation of China (Nos.41630312,41602128,41703055)the “Research Grants by China Geological Survey (No.DD20160060)”+2 种基金the “Fundamental Research Funds for the Central UniversitiesCHD (Nos.300102279206,300102278204)”the fund from China Scholarship Council。
文摘Analysis of tectonothermal history of the Yanchang Formation in the western Weibei Uplift and in the northwestern Weihe Basin can reconstruct the cooling history of the southwest most remained Upper Triassic source rock of the North China Plate. Apatite fission-track(AFT) and(U-ThSm)/He(AHe) analysis were used to recover the cooling and uplift history of the Upper Triassic here. Ten sandstones from the Middle–Upper Triassic strata yield AFT ages between 179.8 ± 7.4 and 127.6 ± 8.1 Ma. AHe ages of two sandstones have the value of 37.7 ± 2.3–131.1 ± 8.1 and 45.7 ± 2.8–83.5 ± 5.2 Ma. Time-temperature modeling results showed that tectonothermal history of the Yanchang Formation was initially different in time-space relationships but then became almost identical through time followed by different cooling rate. Modeling results of the Triassic strata in the Qianyang area and the Yaojiagou area revealed three different uplift-cooling stages commencing in the Late Jurassic at ~165 Ma and in Early Cretaceous at ~110 Ma, respectively, both followed by first similar cooling histories to the Early Miocene at ~20 – 23 Ma and then different since the Late Miocene. Uplift-cooling rate since the Late Miocene at ~8 Ma were different between the Western Weibei Uplift and the Northwestern Weihe Basin. The timing, cooling-uplift rates of the Yaojiagou area, which was mainly controlled by movements related to the Liupanshan Mountains, the Qinling Orogens and the Weibei Uplift, had the earliest onset of uplift-cooling for the Upper Triassic series compared to other regions within the Weibei Uplift. Cooling paths for the Upper Triassic series became uniform regionally in the Early Cretaceous marking a key time for the tectonothermal evolutionary history of Upper Triassic series in the southwestern North China Plate.
基金supported by the Hebei Province“Giant Plan”,China(Grant No.4570031)the Hebei Province Natural Science Fund,China(Grant No.E2019203431)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province,China(Grant No.E2020203174).
文摘A Lagrange dynamic model is established based on small-angle approximation to improve the simulation model for shipborne helicopter landing collision.To describe fuselage motion effectively,the proposed model considers ship motion,the interaction of the tires with the deck,and tire slippage.A mechanism of sliding motion is built,and a real-time reliability analysis of the algorithm is implemented to validate the proposed model.Numerical simulations are also conducted under different operation conditions.Results show that the proposed dynamic model can simulate the collision motion of helicopter landing in real time.Several suggestions for helicopter pilot landing are likewise provided.
基金supported by the National Natural Science Foundation of China(No.62101471)partially supported by the Shenzhen Research Institute of City University of Hong Kong,the Research Grants Council of the Hong Kong Special Administrative Region,China(No.CityU 21201420)+8 种基金Shenzhen Science and Technology Funding Fundamental Research Program(No.2021Szvup126)National Natural Science Foundation of Shandong Province(No.ZR2021LZH010)Changsha International and Regional Science and Technology Cooperation Program(No.kh2201023)Chow Sang Sang Group Research Fund sponsored by Chow Sang Sang Holdings International Limited(No.9229062)CityU MFPRC(No.9680333)CityU SIRG(No.7020057)CityU APRC(No.9610485)CityU ARG(No.9667225)CityU SRG-Fd(No.7005666).
文摘Autonomous driving and self-driving vehicles have become the most popular selection for customers for their convenience.Vehicle angle prediction is one of the most prevalent topics in the autonomous driving industry,that is,realizing real-time vehicle angle prediction.However,existing methods of vehicle angle prediction utilize only single-modal data to achieve model prediction,such as images captured by the camera,which limits the performance and efficiency of the prediction system.In this paper,we present Emma,a novel vehicle angle prediction strategy that achieves multi-modal prediction and is more efficient.Specifically,Emma exploits both images and inertial measurement unit(IMU)signals with a fusion network for multi-modal data fusion and vehicle angle prediction.Moreover,we design and implement a few-shot learning module in Emma for fast domain adaptation to varied scenarios(e.g.,different vehicle models).Evaluation results demonstrate that Emma achieves overall 97.5%accuracy in predicting three vehicle angle parameters(yaw,pitch,and roll),which outperforms traditional single-modalities by approximately 16.7%-36.8%.Additionally,the few-shot learning module presents promising adaptive ability and shows overall 79.8%and 88.3%accuracy in 5-shot and 10-shot settings,respectively.Finally,empirical results show that Emma reduces energy consumption by 39.7%when running on the Arduino UNO board.