Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
Casson fluid-mediated hybrid nanofluids are more effective at transferring heat than traditional heat transfer fluids in terms of thermal conductivity.Heat exchangers,cooling systems and other thermal management syste...Casson fluid-mediated hybrid nanofluids are more effective at transferring heat than traditional heat transfer fluids in terms of thermal conductivity.Heat exchangers,cooling systems and other thermal management systems are ideal for use with Casson fluids.Precise control of the flow and release of medication is necessary when using Casson fluids in drug delivery systems because of their unique rheological properties.Nanotechnology involves the creation of nanoparticles that are loaded with drugs and distributed in Casson fluid-based carriers for targeted delivery.In this study,to create a hybrid nanofluid,both single-walled carbon nanotubes(SWCNTs)and multi-walled carbon nanotubes(MWCNTs)are dispersed in a Casson fluid with Fourier’s and Fick’s laws assumptions.The Casson fluid is suitable for various engineering and medical applications due to the enhancement of heat transfer and thermal conductivity by the carbon nanotubes.Our objective is to understand how SWCNTs and MWCNTs impact the flow field by studying the flow behavior of the Casson hybrid nanofluid when it is stretched against a Riga plate.The Darcy-Forchheimer model is also used to account for the impact of the porous medium near the stretching plate.Both linear and quadratic drag terms are taken into account in this model to accurately predict the flow behavior of the nanofluid.In addition,the homotopy analysis method is utilized to address the model problem.The outcomes are discussed and deliberated based on drug delivery applications.These findings shed valuable light on the flow characteristics of a Casson hybrid nanofluid comprising SWCNTs and MWCNTs.It is observed that the incorporation of carbon nanotubes makes the nanofluid a promising candidate for medical applications due to its improved heat transfer properties.展开更多
This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have...This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.展开更多
This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder.Two different nanoparticles such as carbon nanotubes(CNTs)and iron oxide Fe3O...This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder.Two different nanoparticles such as carbon nanotubes(CNTs)and iron oxide Fe3O4 have been added to the base fluid in order to prepare a hybrid nanofluid.Nonlinear partial differential equations for momentum,energy and convective diffusion have been changed into dimensionless ordinary differential equations after using Von Karman approach.Homotopy analysis method(HAM),a powerful analytical approach has been used to find the solution to the given problem.The effects of the physical constraints on velocity,concentration and temperature profile have been drawn as well for discussion purpose.The numerical outcomes have been carried out for the drag force,heat transfer rate and diffusion rate etc.The Biot number of heat and mass transfer affects the fluid temperature whereas the Forchhemier parameter and the inclination angle decrease the velocity of the fluid flow.The results show that hybrid nanofluid is the best source of enhancing heat transfer and can be used for cooling purposes as well.展开更多
The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It...The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It has been examined that the behavior of the physical parameters altered after the small intervals and diverse from the traditional approach. The similarity variables have been utilized to alter the basic flow equations into the nonlinear ordinary differential equations. The result of the transformed equations is computed by BVPh 2.0 package. The performance of different constraints, for flow motion and temperature distributions are plotted and conferred. It has been observed that under the Marangoni convection the impact of the physical parameters varies after the point of inflection and the diverse impact of the embedding constraints provide space for the variation of the point of inflection for the desired spray analysis.展开更多
Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be...Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles.In the current work,a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account.The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work.The flow is affected by variations in the viscous forces,along with viscous dissipation effects and Marangoni convection.A time-constrained magnetic field is applied in the normal direction to the flow system.The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables.The homotopy analysis method is employed to find the solution to the resultant equations.It is noticed in this study that the flow characteristics decline with augmentation of magnetic,viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters.Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number.The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form.A comparison of current work with established results is carried out,with good agreement.展开更多
The aim of this research is the improvement towards the consumption of energy in the field of engineering and industry. The efforts have been paid to the enhancement of heat transmission and cooling process through a ...The aim of this research is the improvement towards the consumption of energy in the field of engineering and industry. The efforts have been paid to the enhancement of heat transmission and cooling process through a nanofluid coating of a nonlinear stretching disc. The combination of Water(H2 O) and multiple walled carbon nanotubes(MWCNT)/single walled carbon nanotubes(SWCNT) have been used as a nanofluid. The spreading of a thin nano-layer with variable thickness over a nonlinear and radially stretching surface has been considered. The estimated results of the problem have been accomplished using the Optimal Homotopy Analysis Method(OHAM). The residual errors of the OHAM method have been shown physically and numerically. The important physical parameters of skin friction and Nusselt number have been calculated and discussed. The other embedding parameters like generalized magnetic parameter, Prantl number, nanofluid volume fraction and Eckert number have been intended and discussed. The obtained results have been compared with the Numerical(ND-Solve) method for both sorts of CNTs. The closed agreement of both methods has been achieved.展开更多
This article studies the unsteady thin film flow of a fourth grade fluid over a moving and oscillating vertical belt.The problem is modeled in terms of non-nonlinear partial differential equations with some physical c...This article studies the unsteady thin film flow of a fourth grade fluid over a moving and oscillating vertical belt.The problem is modeled in terms of non-nonlinear partial differential equations with some physical conditions.Both problems of lift and drainage are studied.Two different techniques namely the adomian decomposition method(ADM)and the optimal homotopy asymptotic method(OHAM)are used for finding the analytical solutions.These solutions are compared and found in excellent agreement.For the physical analysis of the problem,graphical results are provided and discussed for various embedded flow parameters.展开更多
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
基金extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)for funding this work(Grant No.IMSIURPP2023053).
文摘Casson fluid-mediated hybrid nanofluids are more effective at transferring heat than traditional heat transfer fluids in terms of thermal conductivity.Heat exchangers,cooling systems and other thermal management systems are ideal for use with Casson fluids.Precise control of the flow and release of medication is necessary when using Casson fluids in drug delivery systems because of their unique rheological properties.Nanotechnology involves the creation of nanoparticles that are loaded with drugs and distributed in Casson fluid-based carriers for targeted delivery.In this study,to create a hybrid nanofluid,both single-walled carbon nanotubes(SWCNTs)and multi-walled carbon nanotubes(MWCNTs)are dispersed in a Casson fluid with Fourier’s and Fick’s laws assumptions.The Casson fluid is suitable for various engineering and medical applications due to the enhancement of heat transfer and thermal conductivity by the carbon nanotubes.Our objective is to understand how SWCNTs and MWCNTs impact the flow field by studying the flow behavior of the Casson hybrid nanofluid when it is stretched against a Riga plate.The Darcy-Forchheimer model is also used to account for the impact of the porous medium near the stretching plate.Both linear and quadratic drag terms are taken into account in this model to accurately predict the flow behavior of the nanofluid.In addition,the homotopy analysis method is utilized to address the model problem.The outcomes are discussed and deliberated based on drug delivery applications.These findings shed valuable light on the flow characteristics of a Casson hybrid nanofluid comprising SWCNTs and MWCNTs.It is observed that the incorporation of carbon nanotubes makes the nanofluid a promising candidate for medical applications due to its improved heat transfer properties.
文摘This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.
文摘This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder.Two different nanoparticles such as carbon nanotubes(CNTs)and iron oxide Fe3O4 have been added to the base fluid in order to prepare a hybrid nanofluid.Nonlinear partial differential equations for momentum,energy and convective diffusion have been changed into dimensionless ordinary differential equations after using Von Karman approach.Homotopy analysis method(HAM),a powerful analytical approach has been used to find the solution to the given problem.The effects of the physical constraints on velocity,concentration and temperature profile have been drawn as well for discussion purpose.The numerical outcomes have been carried out for the drag force,heat transfer rate and diffusion rate etc.The Biot number of heat and mass transfer affects the fluid temperature whereas the Forchhemier parameter and the inclination angle decrease the velocity of the fluid flow.The results show that hybrid nanofluid is the best source of enhancing heat transfer and can be used for cooling purposes as well.
文摘The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It has been examined that the behavior of the physical parameters altered after the small intervals and diverse from the traditional approach. The similarity variables have been utilized to alter the basic flow equations into the nonlinear ordinary differential equations. The result of the transformed equations is computed by BVPh 2.0 package. The performance of different constraints, for flow motion and temperature distributions are plotted and conferred. It has been observed that under the Marangoni convection the impact of the physical parameters varies after the point of inflection and the diverse impact of the embedding constraints provide space for the variation of the point of inflection for the desired spray analysis.
基金funding this work through research groups(Grant No.RGP.1/260/42)。
文摘Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles.In the current work,a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account.The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work.The flow is affected by variations in the viscous forces,along with viscous dissipation effects and Marangoni convection.A time-constrained magnetic field is applied in the normal direction to the flow system.The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables.The homotopy analysis method is employed to find the solution to the resultant equations.It is noticed in this study that the flow characteristics decline with augmentation of magnetic,viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters.Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number.The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form.A comparison of current work with established results is carried out,with good agreement.
文摘The aim of this research is the improvement towards the consumption of energy in the field of engineering and industry. The efforts have been paid to the enhancement of heat transmission and cooling process through a nanofluid coating of a nonlinear stretching disc. The combination of Water(H2 O) and multiple walled carbon nanotubes(MWCNT)/single walled carbon nanotubes(SWCNT) have been used as a nanofluid. The spreading of a thin nano-layer with variable thickness over a nonlinear and radially stretching surface has been considered. The estimated results of the problem have been accomplished using the Optimal Homotopy Analysis Method(OHAM). The residual errors of the OHAM method have been shown physically and numerically. The important physical parameters of skin friction and Nusselt number have been calculated and discussed. The other embedding parameters like generalized magnetic parameter, Prantl number, nanofluid volume fraction and Eckert number have been intended and discussed. The obtained results have been compared with the Numerical(ND-Solve) method for both sorts of CNTs. The closed agreement of both methods has been achieved.
文摘This article studies the unsteady thin film flow of a fourth grade fluid over a moving and oscillating vertical belt.The problem is modeled in terms of non-nonlinear partial differential equations with some physical conditions.Both problems of lift and drainage are studied.Two different techniques namely the adomian decomposition method(ADM)and the optimal homotopy asymptotic method(OHAM)are used for finding the analytical solutions.These solutions are compared and found in excellent agreement.For the physical analysis of the problem,graphical results are provided and discussed for various embedded flow parameters.