Magnetic susceptibility,specific heat,and neutron powder diffraction measurements have been performed on polycrystalline Li_(2)Co(WO_4)_(2)samples.Under zero magnetic field,two successive magnetic transitions at T_(N1...Magnetic susceptibility,specific heat,and neutron powder diffraction measurements have been performed on polycrystalline Li_(2)Co(WO_4)_(2)samples.Under zero magnetic field,two successive magnetic transitions at T_(N1)~9.4 K and T_(N2)~7.4 K are observed.The magnetic ordering temperatures gradually decrease as the magnetic field increases.Neutron diffraction reveals that Li_(2)Co(WO_4)_(2)enters an incommensurate magnetic state with a temperature dependent k between T_(N1)and T_(N2).The magnetic propagation vector locks-in to a commensurate value k=(1/2,1/4,1/4)below T_(N2).The antiferromagnetic structure is refined at 1.7 K with Co2+magnetic moment 2.8(1),μ_B,consistent with our first-principles calculations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834002,12074111,and 11704109)the National Key R&D Project of China(Grant No.2016YFA0300101)。
文摘Magnetic susceptibility,specific heat,and neutron powder diffraction measurements have been performed on polycrystalline Li_(2)Co(WO_4)_(2)samples.Under zero magnetic field,two successive magnetic transitions at T_(N1)~9.4 K and T_(N2)~7.4 K are observed.The magnetic ordering temperatures gradually decrease as the magnetic field increases.Neutron diffraction reveals that Li_(2)Co(WO_4)_(2)enters an incommensurate magnetic state with a temperature dependent k between T_(N1)and T_(N2).The magnetic propagation vector locks-in to a commensurate value k=(1/2,1/4,1/4)below T_(N2).The antiferromagnetic structure is refined at 1.7 K with Co2+magnetic moment 2.8(1),μ_B,consistent with our first-principles calculations.