Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mea...Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mean all-sky aerosol optical thickness (AOT) at 550 nm, theAngstr/Sm Exponent (AE) based on AOTs at 440 and 870 nm, and the single scattering albedo (SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the AeroCom models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the'opposite is found over regions dominated by hydrophobic aerosol.展开更多
Based on a vector radiative transfer model of the atmosphere–ocean system,the influence of oceanic components on radiation processes,including polarization effects,was investigated in the wavelength region ranging fr...Based on a vector radiative transfer model of the atmosphere–ocean system,the influence of oceanic components on radiation processes,including polarization effects,was investigated in the wavelength region ranging from 0.380 to 0.865 μm.The components considered were phytoplankton,inorganic suspended material(sediment),and colored,dissolved organic matter.Due to their important roles in oceanic radiation processes,the sensitivity of the bidirectional reflectance to the rough ocean surface,represented by the wind velocity 10 m above the ocean surface,and aerosol,were taken into account.The results demonstrated that both radiance and polarized radiance just below the ocean surface were sensitive to the change of the concentrations of the considered components,while the dependence of polarized radiance on the observation geometry was more sensitive than radiance.Significant differences in the specular plane existed between the impacts of the phytoplankton and sediment on the degree of polarization just above the ocean surface at 670 nm.At the top of the atmosphere(TOA),polarization was relatively insensitive to changing concentrations of ocean particles at longer wavelengths.Furthermore,the radiance at the TOA in the solar plane was more sensitive to the aerosol optical thickness than wind velocity.In contrast,wind velocity strongly influenced the radiance at the TOA in the sun glint region,while the polarization degree showed less dependence in that region.Finally,a nonlinear optimal inversion method was proposed to simultaneously retrieve the aerosol and wind velocity using radiance measurement.展开更多
A Local Ensemble Transform Kalman Filter assimilation system has been implemented into an aerosol-coupled global nonhydrostatic model to simulate the aerosol mass concentration and aerosol optical properties of 3 dese...A Local Ensemble Transform Kalman Filter assimilation system has been implemented into an aerosol-coupled global nonhydrostatic model to simulate the aerosol mass concentration and aerosol optical properties of 3 desert sites(Ansai, Fukang, Shapotou) in northwestern China. One-month experiment results of April 2006 reveal that the data assimilation can correct the much overestimated aerosol surface mass concentration, and has a strong positive effect on the aerosol optical depth(AOD) simulation, improving agreement with observations. Improvement is limited with the?ngstr€om Exponent(AE) simulation, except for much improved correlation coefficient and model skill scores over the Ansai site. Better agreement of the AOD spatial distribution with the independent observations of Terra(Deep Blue) and Multi-angle Imaging Spectroradiometer(MISR) AODs is obtained by assimilating the Moderate Resolution Imaging Spectroradiometer(MODIS) AOD product, especially for regions with AODs lower than 0.30. This study confirms the usefulness of the remote sensing observations for the improvement of global aerosol modeling.展开更多
Three associations of the International Union of Geodesy and Geophysics (IUGG)--International Association for the Physical Sciences of the Oceans (IAPSO), International Association of Meteorology and Atmospheric S...Three associations of the International Union of Geodesy and Geophysics (IUGG)--International Association for the Physical Sciences of the Oceans (IAPSO), International Association of Meteorology and Atmospheric Sciences (IA- MAS) and International Association of Geomagnetism and Aeronomy (IAGA)--held their joint Scientific Assembly over 27 August-1 September in Cape Town, South Africa. This was the first full IAMAS assembly to be held in Africa (Figs. 1 & 2).展开更多
The long-term trends of total surface solar radiation (SSR), surface diffuse radiation, and surface air temperature were analyzed in this study based on updated 48-yr data from 55 observational stations in China, an...The long-term trends of total surface solar radiation (SSR), surface diffuse radiation, and surface air temperature were analyzed in this study based on updated 48-yr data from 55 observational stations in China, and then the correlation between SSR and the diurnal temperature range (DTR) was studied. The effect of total solar radiation on surface air temperature in China was investigated on the basis of the above analyses. A strong correlation between SSR and DTR was found for the period 1961-2008 in China. The highest correlation and steepest regression line slope occurred in winter, indicating that the solar radiation effect on DTR was the largest in this season. Clouds and water vapor have strong influences on both SSR and DTR, and hence on their relationship. The largest correlations between SSR and DTR occurred in wintertime in northern China, regardless of all-day (including clear days and cloudy days) or clear-day cases. Our results also showed that radiation arriving at the surface in China decreased significantly during 1961-1989 (dimming period), but began to increase during 1990 2008 (brightening period), in agreement with previous global studies. The reduction of total SSR offset partially the greenhouse warming during 1961-1989. However, with the increase of SSR after 1990, this offsetting effect vanished; on the contrary, it even made a contribution to the accelerated warming. Nonetheless, the greenhouse warming still played a controlling role because of the increasing of minimum and mean surface temperatures in the whole study period of 1961-2008. We estimated that the greenhouse gases alone may have caused surface temperatures to rise by 0.31-0.46℃ (10 yr)^-1 during 1961-2008, which is higher than previously estimated. Analysis of the corresponding changes in total solar radiation, diffuse radiation, and total cloud cover indicated that the dimming and brightening phenomena in China were likely attributable to increases in absorptive and scattering aerosols in the atmosphere, respectively.展开更多
基金National Natural Science Funds of China (Grant Nos. 41130104, and 41475031)Open Research Program of Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration from Nanjing University of Information Science and Technology (Grant No. KDW1302)+4 种基金the Public Meteorology Special Foundation of MOST (Grant No. GYHY201406023)the National Key Basic Research and Development Program (973 Program, 2011CB403401)Teruyuki NAKAJIMA is supported by projects from JAXA/EarthC ARE, MEXT/VL for Climate System Diagnosticsthe MOE/Global Environment Research Fund A-1101, NIES/GOSAT, NIES/CGER, MEXT/RECCA/SALSAthe S-12 of the MOE
文摘Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mean all-sky aerosol optical thickness (AOT) at 550 nm, theAngstr/Sm Exponent (AE) based on AOTs at 440 and 870 nm, and the single scattering albedo (SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the AeroCom models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the'opposite is found over regions dominated by hydrophobic aerosol.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA05100300)the National Basic Research Program of China(Grant No.2013CB955801)+2 种基金the National Natural Science Foundation of China(Grant Nos.41175030 and 41475136)the National Basic Research Program of China(Grant No.2014CB953703)funds from MOEJ/GOSAT&GOSAT2,JST/CREST/EMS/TEEDDA,JAXA/ Earth CARE&GCOM-C,MEXT/RECCA/SALSA,MEXT/Kakenhi/ Innovative Areas 2409,and MOEJ/ERTDF/S-12
文摘Based on a vector radiative transfer model of the atmosphere–ocean system,the influence of oceanic components on radiation processes,including polarization effects,was investigated in the wavelength region ranging from 0.380 to 0.865 μm.The components considered were phytoplankton,inorganic suspended material(sediment),and colored,dissolved organic matter.Due to their important roles in oceanic radiation processes,the sensitivity of the bidirectional reflectance to the rough ocean surface,represented by the wind velocity 10 m above the ocean surface,and aerosol,were taken into account.The results demonstrated that both radiance and polarized radiance just below the ocean surface were sensitive to the change of the concentrations of the considered components,while the dependence of polarized radiance on the observation geometry was more sensitive than radiance.Significant differences in the specular plane existed between the impacts of the phytoplankton and sediment on the degree of polarization just above the ocean surface at 670 nm.At the top of the atmosphere(TOA),polarization was relatively insensitive to changing concentrations of ocean particles at longer wavelengths.Furthermore,the radiance at the TOA in the solar plane was more sensitive to the aerosol optical thickness than wind velocity.In contrast,wind velocity strongly influenced the radiance at the TOA in the sun glint region,while the polarization degree showed less dependence in that region.Finally,a nonlinear optimal inversion method was proposed to simultaneously retrieve the aerosol and wind velocity using radiance measurement.
基金supported by the funds from the National Natural Science Funds of China (41475031, 41130104)the Public Meteorology Special Foundation of MOST (GYHY201406023)+1 种基金the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(15K02ESPCP)the JAXA/Earth CARE, the MEXT/VL for Climate System Diagnostics, the MOE/Global Environment Research Fund S-12 (14426634)and A-1101, the NIES/GOSAT, theS/ NIECGER, and the MEXT/RECCA/SALSA
文摘A Local Ensemble Transform Kalman Filter assimilation system has been implemented into an aerosol-coupled global nonhydrostatic model to simulate the aerosol mass concentration and aerosol optical properties of 3 desert sites(Ansai, Fukang, Shapotou) in northwestern China. One-month experiment results of April 2006 reveal that the data assimilation can correct the much overestimated aerosol surface mass concentration, and has a strong positive effect on the aerosol optical depth(AOD) simulation, improving agreement with observations. Improvement is limited with the?ngstr€om Exponent(AE) simulation, except for much improved correlation coefficient and model skill scores over the Ansai site. Better agreement of the AOD spatial distribution with the independent observations of Terra(Deep Blue) and Multi-angle Imaging Spectroradiometer(MISR) AODs is obtained by assimilating the Moderate Resolution Imaging Spectroradiometer(MODIS) AOD product, especially for regions with AODs lower than 0.30. This study confirms the usefulness of the remote sensing observations for the improvement of global aerosol modeling.
文摘Three associations of the International Union of Geodesy and Geophysics (IUGG)--International Association for the Physical Sciences of the Oceans (IAPSO), International Association of Meteorology and Atmospheric Sciences (IA- MAS) and International Association of Geomagnetism and Aeronomy (IAGA)--held their joint Scientific Assembly over 27 August-1 September in Cape Town, South Africa. This was the first full IAMAS assembly to be held in Africa (Figs. 1 & 2).
基金Supported by the National Basic Research and Development(973)Program of China(2011CB403405)National Science and Technology Support Program of China(2008BAC40B02)China Meteorological Adminstration Special Public Welfare Research Fund(GYHY200906020)
文摘The long-term trends of total surface solar radiation (SSR), surface diffuse radiation, and surface air temperature were analyzed in this study based on updated 48-yr data from 55 observational stations in China, and then the correlation between SSR and the diurnal temperature range (DTR) was studied. The effect of total solar radiation on surface air temperature in China was investigated on the basis of the above analyses. A strong correlation between SSR and DTR was found for the period 1961-2008 in China. The highest correlation and steepest regression line slope occurred in winter, indicating that the solar radiation effect on DTR was the largest in this season. Clouds and water vapor have strong influences on both SSR and DTR, and hence on their relationship. The largest correlations between SSR and DTR occurred in wintertime in northern China, regardless of all-day (including clear days and cloudy days) or clear-day cases. Our results also showed that radiation arriving at the surface in China decreased significantly during 1961-1989 (dimming period), but began to increase during 1990 2008 (brightening period), in agreement with previous global studies. The reduction of total SSR offset partially the greenhouse warming during 1961-1989. However, with the increase of SSR after 1990, this offsetting effect vanished; on the contrary, it even made a contribution to the accelerated warming. Nonetheless, the greenhouse warming still played a controlling role because of the increasing of minimum and mean surface temperatures in the whole study period of 1961-2008. We estimated that the greenhouse gases alone may have caused surface temperatures to rise by 0.31-0.46℃ (10 yr)^-1 during 1961-2008, which is higher than previously estimated. Analysis of the corresponding changes in total solar radiation, diffuse radiation, and total cloud cover indicated that the dimming and brightening phenomena in China were likely attributable to increases in absorptive and scattering aerosols in the atmosphere, respectively.