期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
烷基链长度对非对称含噻吩五元稠环化合物传输性能的影响 被引量:4
1
作者 李骅峰 李伟利 +1 位作者 田洪坤 王利祥 《应用化学》 CAS CSCD 北大核心 2023年第7期1054-1060,共7页
含噻吩并苯类分子是一类代表性的高迁移率有机半导体材料,以其为共轭骨架构建的不对称分子在薄膜中倾向于形成双层排列结构,并以二维层状方式生长,有利于实现高迁移率。烷基取代基的长度会对有机半导体材料的堆积形貌产生影响。本文设... 含噻吩并苯类分子是一类代表性的高迁移率有机半导体材料,以其为共轭骨架构建的不对称分子在薄膜中倾向于形成双层排列结构,并以二维层状方式生长,有利于实现高迁移率。烷基取代基的长度会对有机半导体材料的堆积形貌产生影响。本文设计合成了不同长度烷基链取代的噻吩并[4,5-b][1]苯并噻吩并[3,2-b][1]苯并噻吩(syn-BTBTT-Cn,n=4,5,6,7,8,10),系统研究了烷基链长度对化合物热稳定性、能级、载流子传输能力、堆积结构和薄膜形貌等方面的影响。结果表明,所有化合物均不具备液晶性,热稳定性良好。在所制备的蒸镀薄膜中所有分子均形成双层堆积结构,共轭核在层内形成鱼骨架堆积,烷基链长度会影响薄膜的有序度和堆积的紧密程度。基于该类材料制备的有机薄膜晶体管(OTFT)器件的迁移率都超过7.0 cm^(2)/(V·s),其中syn-BTBTT-C8分子的迁移率最高可达13.8 cm^(2)/(V·s),平均值为12.5 cm^(2)/(V·s)。 展开更多
关键词 含噻吩并苯类分子 非对称结构 有机薄膜晶体管 迁移率
下载PDF
MmNet:Identifying Mikania micrantha Kunth in the wild via a deep Convolutional Neural Network 被引量:9
2
作者 QIAO Xi LI Yan-zhou +6 位作者 SU Guang-yuan tian hong-kun ZHANG Shuo SUN Zhong-yu YANG Long WAN Fang-hao QIAN Wan-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第5期1292-1300,共9页
Mikania micrantha Kunth is an invasive alien weed and known as a plant killer around the world.Accurately and rapidly identifying M.micrantha in the wild is important for monitoring its growth status,as this helps man... Mikania micrantha Kunth is an invasive alien weed and known as a plant killer around the world.Accurately and rapidly identifying M.micrantha in the wild is important for monitoring its growth status,as this helps management officials to take the necessary steps to devise a comprehensive strategy to control the invasive weed in the identified area.However,this approach still mainly depends on satellite remote sensing and manual inspection.The cost is high and the accuracy rate and efficiency are low.We acquired color images of the monitoring area in the wild environment using an Unmanned Aerial Vehicle(UAV)and proposed a novel network-MmNet-based on a deep Convolutional Neural Network(CNN)to identify M.micrantha in the images.The network consists of AlexNet Local Response Normalization(LRN),along with the GoogLeNet and continuous convolution of VGG inception models.After training and testing,the identification of 400 testing samples by MmNet is very good,with accuracy of 94.50%and time cost of 10.369 s.Moreover,in quantitative comparative analysis,the proposed MmNet not only has high accuracy and efficiency but also simple construction and outstanding repeatability.Compared with recently popular CNNs,MmNet is more suitable for the identification of M.micrantha in the wild.However,to meet the challenge of wild environments,more M.micrantha images need to be acquired for MmNet training.In addition,the classification labels need to be sorted in more detail.Altogether,this research provides some theoretical and scientific basis for the development of intelligent monitoring and early warning systems for M.micrantha and other invasive species. 展开更多
关键词 Mikania MICRANTHA Kunth INVASIVE ALIEN PLANT image processing DEEP learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部