期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向OD客流的高速列车开行方案的优化 被引量:3
1
作者 田慧欣 王帝 +1 位作者 帅民伟 李坤 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第11期1535-1542,共8页
满足旅客出行需求的列车开行方案能够更好地吸引客流,提高高速铁路的核心竞争力.以最大化经济收益和最小化出行费用为目标函数,以高速铁路开行方案为研究对象,以旅客出行需求等作为约束条件,将列车开行方案与OD客流量结合起来,同时考虑... 满足旅客出行需求的列车开行方案能够更好地吸引客流,提高高速铁路的核心竞争力.以最大化经济收益和最小化出行费用为目标函数,以高速铁路开行方案为研究对象,以旅客出行需求等作为约束条件,将列车开行方案与OD客流量结合起来,同时考虑旅客的购票心理和列车购票的时效性,建立了一种基于动态客流的列车开行方案的多目标优化模型,并设计一种基于个体信息和改进变异算子的多目标差分(SG-MOSaDE)算法进行求解.以广州市某线路为例进行实验,结果表明,优化后的开行方案不仅最大化满足了旅客出行需求,而且在提高铁路部门经济收益的同时降低了旅客的出行花费,并且优化后的列车总停站次数较原来有所下降,停站方案更加均衡. 展开更多
关键词 高速列车 多目标优化 OD客流 开行方案 差分进化算法
下载PDF
基于改进相空间重构的压缩机运行状态预测 被引量:1
2
作者 李毅 王红一 +2 位作者 任岱旭 田慧欣 李红颖 《机械设计》 CSCD 北大核心 2020年第5期84-90,共7页
精确的状态预测对于压缩机的平稳运行至关重要,同时,振动信号能够表征绝大多数压缩机的运行状态。为提高预测精度,文中提出改进的相空间重构法和神经网络相结合的预测模型。首先利用相空间重构技术,将一维时间序列振动信号扩展到高维空... 精确的状态预测对于压缩机的平稳运行至关重要,同时,振动信号能够表征绝大多数压缩机的运行状态。为提高预测精度,文中提出改进的相空间重构法和神经网络相结合的预测模型。首先利用相空间重构技术,将一维时间序列振动信号扩展到高维空间。针对传统的G-P算法中无标度区识别过于依赖人工经验的不足,提出了DBSCAN聚类与粒子群优化算法相结合的无标度区自动识别方法,并以相关性指标最大和残差平方和最小为目标建立无标度区识别优化模型,使用粒子群算法获得最优解,实现无标度区的自动识别。使用BP神经网络对重构后的振动信号进行预测。预测结果表明相空间重构后的信号预测效果更好。 展开更多
关键词 状态监测 相空间重构 DBSCAN聚类 粒子群优化
下载PDF
SOC estimation based on data driven exteaded Kalman filter algorithm for power battery of electric vehicle and plug-in electric vehicle 被引量:12
3
作者 LIU Fang MA Jie +3 位作者 SU Wei-xing CHEN Han-ning tian hui-xin LI Chun-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1402-1415,共14页
State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradicti... State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm. 展开更多
关键词 state of charge extended Kalman filter autoregressive model power battery
下载PDF
基于HI-DD-AdaBoost.RT的锂离子动力电池SOH预测 被引量:6
4
作者 田慧欣 秦鹏亮 +1 位作者 李坤 王红一 《控制与决策》 EI CSCD 北大核心 2021年第3期686-692,共7页
锂离子电池是一个复杂的电化学动态系统,实时准确的健康状态(SOH)估计对电动汽车动力锂电池的维护至关重要,传统建模方法难以实现SOH的在线估算.基于此,从实时评估电池的SOH出发,在增量学习的基础上,选取与电池健康状态相关的指标建立SO... 锂离子电池是一个复杂的电化学动态系统,实时准确的健康状态(SOH)估计对电动汽车动力锂电池的维护至关重要,传统建模方法难以实现SOH的在线估算.基于此,从实时评估电池的SOH出发,在增量学习的基础上,选取与电池健康状态相关的指标建立SOH预测模型.考虑到增量学习中的耗时性问题,提出融合滑动窗口技术的HI-DD算法,该算法可以检测概念漂移是否发生,从而指导和确定模型更新位置;设计出HI-DD与AdaBoost.RT结合的模型更新策略,进而提高模型的在线学习性能和预测精度,最后使用CALCE提供的电池老化实验数据对所提出的方法进行验证.结果表明,基于增量学习的HI-DD-AdaBoost.RT预测算法具有较强的在线更新能力和较高的预测精度,能够满足SOH在线预测的实际需求. 展开更多
关键词 锂离子动力电池 SOH 增量学习 HI-DD 概念漂移 AdaBoost.RT
原文传递
Hybrid Modeling for Soft Sensing of Molten Steel Temperature in LF 被引量:4
5
作者 tian hui-xin MAO Zhi-zhong WANG An-na 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第4期1-6,共6页
Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conserva... Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conservation is described; and then, an improved intelligent model based on process data is presented by ensemble ELM (extreme learning machine) for predicting the molten steel temperature in LF. Secondly, the self-adaptive data fusion is pro- posed as a hybrid modeling method to combine the thermal model with the intelligent model. The new hybrid model could complement mutual advantage of two models by combination. It can overcome the shortcoming of parameters obtained on-line hardly in a thermal model and the disadvantage of lacking the analysis of ladle furnace metallurgical process in an intelligent model. The new hybrid model is applied to a 300 t LF in Baoshan Iron and Steel Co Ltd for predicting the molten steel temperature. The experiments demonstrate that the hybrid model has good generalization performance and high accuracy. 展开更多
关键词 ladle furnace hybrid modeling soft sensing thermal model data fusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部