对常规底注式浇注4.2 t Mn18Cr18N空心钢锭的凝固过程进行了模拟研究,分析了浇注和冷却参数对凝固缺陷和组织的影响。结果表明,内外壁的冷却条件显著影响钢锭的凝固顺序和组织特征。随着内外壁换热系数的减小,最后凝固位置移向换热系数...对常规底注式浇注4.2 t Mn18Cr18N空心钢锭的凝固过程进行了模拟研究,分析了浇注和冷却参数对凝固缺陷和组织的影响。结果表明,内外壁的冷却条件显著影响钢锭的凝固顺序和组织特征。随着内外壁换热系数的减小,最后凝固位置移向换热系数较小的一侧,柱状晶向等轴晶的转变(CET)提前,柱状晶长度减小。在1 415 C和25 kg/s低温慢浇的条件下,当内外壁的换热系数比值为2∶5时,钢锭径向从内外壁侧向壁厚内部逐渐凝固,最终凝固位置在靠近内壁的1/4~1/3壁厚处,该处呈现一定程度的疏松缺陷,凝固组织为等轴晶;而内外壁处则为柱状晶组织,壁厚截面上两种组织比例相当。形核参数中体形核密度是影响CET以及晶粒尺寸的主要参数,而面形核密度可以控制柱状晶的一次枝晶间距。展开更多
A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The ma...A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The mass loss per unit area of passivated samples was measured after the corrosion in 0.5 mol/L NaCl + 0.005 mol/L H2SO4 at room temperature for 96 h. The electrochemical behaviors of cerium, tannic acid, and cerium-tannic acid passivated samples on galvanized steel in 0.5 mol/L NaCl solution were investigated by polarization curves and electrochemical impendence spectra. The corrosion equivalent circuit was established according to the impedance characteristics. The results show that cerium-tannic acid treated samples exhibit better corrosion resistance than the sole cerium or tannic acid treated samples under the same condition. The mechanism of synergistic effect for cerium-tannic acid passivation on galvanized steel was discussed.展开更多
基金supported by the Science and Technology Foundation of the Department of Education of Jiangxi Province,China (No. GJJ08205)
文摘A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The mass loss per unit area of passivated samples was measured after the corrosion in 0.5 mol/L NaCl + 0.005 mol/L H2SO4 at room temperature for 96 h. The electrochemical behaviors of cerium, tannic acid, and cerium-tannic acid passivated samples on galvanized steel in 0.5 mol/L NaCl solution were investigated by polarization curves and electrochemical impendence spectra. The corrosion equivalent circuit was established according to the impedance characteristics. The results show that cerium-tannic acid treated samples exhibit better corrosion resistance than the sole cerium or tannic acid treated samples under the same condition. The mechanism of synergistic effect for cerium-tannic acid passivation on galvanized steel was discussed.