In order to deal with the increasingly serious environmental problems,it is important and necessary to lower the concentration of greenhouse gases,especially the CO_(2)gas.CO_(2)capture and storage are the relative su...In order to deal with the increasingly serious environmental problems,it is important and necessary to lower the concentration of greenhouse gases,especially the CO_(2)gas.CO_(2)capture and storage are the relative suitable options for the reduction of these harmful gas concentration.Through the variation of mass ratio of KOH to bio-char,the as prepared active carbon PC-4 exhibits a higher specific surface area of 2491.57 cm^(3)·g^(−1),with the ultra-micropores of 0.5 and 1.2 nm.At 298 K/1 bar,the CO_(2)adsorption capacity of PC-4 also represents the highest value of 5.81 mmol/g.This work demonstrates that the both the pore size and the specific surface area are equally important to enhance the CO_(2)adsorption.This work provides a sustainable method to develop high efficiency waste-based adsorbents to deal with environmental issues of CO_(2)gas.展开更多
基金the National Natural Science Foundation of China(NSFC)(Nos.12205100 and 11665017)the Key Scientific Research Project in Colleges and Universities of Henan Province,China(No.23B140002)the Key Project of College Students'Innovation and Entrepreneurship Training Program 2022 of North China University of Water Resources and Electric Power(No.2022XA050)。
文摘In order to deal with the increasingly serious environmental problems,it is important and necessary to lower the concentration of greenhouse gases,especially the CO_(2)gas.CO_(2)capture and storage are the relative suitable options for the reduction of these harmful gas concentration.Through the variation of mass ratio of KOH to bio-char,the as prepared active carbon PC-4 exhibits a higher specific surface area of 2491.57 cm^(3)·g^(−1),with the ultra-micropores of 0.5 and 1.2 nm.At 298 K/1 bar,the CO_(2)adsorption capacity of PC-4 also represents the highest value of 5.81 mmol/g.This work demonstrates that the both the pore size and the specific surface area are equally important to enhance the CO_(2)adsorption.This work provides a sustainable method to develop high efficiency waste-based adsorbents to deal with environmental issues of CO_(2)gas.