We focus on several aspects concerning the numerical simulation of a passively mode-locked Yb-doped fiber laser by a non-distributed model.The characteristics of soliton evolution in a wave-breaking-free regime are nu...We focus on several aspects concerning the numerical simulation of a passively mode-locked Yb-doped fiber laser by a non-distributed model.The characteristics of soliton evolution in a wave-breaking-free regime are numerically investigated with the split-step Fourier method.Based on the model,a parabolic-shaped soliton with a nearly linear chirp and bound soliton pairs are obtained by controlling the intra-cavity average dispersion of the fiber laser.A phenomenon is observed that by keeping the system parameters unchanged,linearly chirped parabolic soliton and bound soliton pairs are attainable under different initial conditions in the transient region between these two kinds of solitons.展开更多
A reforming dynamic system based on the single-ring erbium-doped fiber laser is proposed in this paper. The reforming system has larger Lyapunov exponent and better pseudorandom characteristics according to the simula...A reforming dynamic system based on the single-ring erbium-doped fiber laser is proposed in this paper. The reforming system has larger Lyapunov exponent and better pseudorandom characteristics according to the simulation results. It is promising in the application of the image encryption and secret communication.展开更多
In this paper, we study the chaotic dynamics of the mode-locked fiber laser by numerical simulation. The structures of the passively mode-locked fiber laser and the actively mode-locked fiber laser are studied by mode...In this paper, we study the chaotic dynamics of the mode-locked fiber laser by numerical simulation. The structures of the passively mode-locked fiber laser and the actively mode-locked fiber laser are studied by modeling and analysis. By appropriately adjusting the small signal gain of the optical fiber amplifier, we observe the period-doubling bifurcations and route to chaos in the passively mode-locked fiber laser based on nonlinear polarization rotation effect. Chaos in the actively mode-locked erbium-doped fiber laser is obtained by adjusting the elliptic modulus parameter of the active modulator and the intra-cavity length. Simulation results have theoretical significance for the practical application of chaotic soliton communication.展开更多
基金by the National Natural Science Foundation of China and Scientific Forefront and Interdisciplinary Innovation Project,Jilin University under Grant Nos 60372061 and 200903296.
文摘We focus on several aspects concerning the numerical simulation of a passively mode-locked Yb-doped fiber laser by a non-distributed model.The characteristics of soliton evolution in a wave-breaking-free regime are numerically investigated with the split-step Fourier method.Based on the model,a parabolic-shaped soliton with a nearly linear chirp and bound soliton pairs are obtained by controlling the intra-cavity average dispersion of the fiber laser.A phenomenon is observed that by keeping the system parameters unchanged,linearly chirped parabolic soliton and bound soliton pairs are attainable under different initial conditions in the transient region between these two kinds of solitons.
文摘A reforming dynamic system based on the single-ring erbium-doped fiber laser is proposed in this paper. The reforming system has larger Lyapunov exponent and better pseudorandom characteristics according to the simulation results. It is promising in the application of the image encryption and secret communication.
基金supported by Changchun Science and Technology Support Program (11KZ36)the National Natural Science Foundation of China (60372061)
文摘In this paper, we study the chaotic dynamics of the mode-locked fiber laser by numerical simulation. The structures of the passively mode-locked fiber laser and the actively mode-locked fiber laser are studied by modeling and analysis. By appropriately adjusting the small signal gain of the optical fiber amplifier, we observe the period-doubling bifurcations and route to chaos in the passively mode-locked fiber laser based on nonlinear polarization rotation effect. Chaos in the actively mode-locked erbium-doped fiber laser is obtained by adjusting the elliptic modulus parameter of the active modulator and the intra-cavity length. Simulation results have theoretical significance for the practical application of chaotic soliton communication.