Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected ...Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.展开更多
The partially linear single-index model(PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement erro...The partially linear single-index model(PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement error possibly in all the variables. The authors propose a new efficient estimation procedure based on the local linear smoothing and the simulation-extrapolation method,and further establish the asymptotic normality of the proposed estimators for both the index parameter and nonparametric link function. The authors also carry out extensive Monte Carlo simulation studies to evaluate the finite sample performance of the new method, and apply it to analyze the osteoporosis prevention data.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11301569,11471029 and 11101014)the Beijing Natural Science Foundation(Grant No.1142002)+2 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)Hong Kong Research Grant(Grant No.HKBU202711)Hong Kong Baptist University FRG Grants(Grant Nos.FRG2/11-12/110 and FRG1/13-14/018)
文摘Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.
基金the National Natural Science Foundation of China under Grant Nos. 11971171,11971300, 11901286, 12071267 and 12171310the Shanghai Natural Science Foundation under Grant No.20ZR1421800+2 种基金the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science (East China Normal University)the General Research Fund (HKBU12303421, HKBU12303918)the Initiation Grant for Faculty Niche Research Areas (RC-FNRA-IG/20-21/SCI/03) of Hong Kong Baptist University。
文摘The partially linear single-index model(PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement error possibly in all the variables. The authors propose a new efficient estimation procedure based on the local linear smoothing and the simulation-extrapolation method,and further establish the asymptotic normality of the proposed estimators for both the index parameter and nonparametric link function. The authors also carry out extensive Monte Carlo simulation studies to evaluate the finite sample performance of the new method, and apply it to analyze the osteoporosis prevention data.