The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be impro...The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be improved for fulfilling the service requirements.Herein,a TiC strengthened Fe-based alloy cladding layer,named TiC-Fe coating,was designed and prepared by plasma cladding technology.The frictional wear performance of coating under various loads was tested.The wear morphology of the coating was observed,and its wear mechanism was examined.The results indicated that the TiC-Fe coating was well formed and metallurgically bonded to the Q345C substrate.Its microstructure mainly consisted of Fe-Cr solid solution,α-Fe phase,(Fe,Cr)_(7)C_(3) phase and TiC phase.The coating exhibited an average microhardness of 980 HV0.2,which was about 5.4 times that of the Q345C substrate.The wear mass loss of the TiC-Fe coatings was much smaller than that of the Q345C substrate,which indicated that the wear resistance of the Q345C coating was superior to the substrate,and the wear mechanism of the coating was mainly attributed to the abrasive wear.展开更多
The improved understandings of the mechanical properties as well as deformation mechanisms at cryogenic temperatures are the prerequisite for realizing the application of any new engineering materials to cryogenic ind...The improved understandings of the mechanical properties as well as deformation mechanisms at cryogenic temperatures are the prerequisite for realizing the application of any new engineering materials to cryogenic industries.Here,a(CoCrNi)_(94)Al_(3)Ti_(3) medium entropy alloy(MEA)with nanoscale L12 coherent precipitates and heterogeneous grain structures was prepared by codoping Al and Ti elements with subsequent cold rolling and heat treatment processes.The mechanical properties were evaluated at the temperature range of 293–113 K.The ultimate strength of the MEA increases almost linearly from 1326 to 1695 MPa as the temperature decreases from 293 to 113 K,while the total elongation remains approximately constant of~35%.The underlying deformation and strengthening mechanisms were investigated using various characterization techniques.Due to the effect of co-doped Al/Ti on channel width of the matrix and the increasing critical twinning stress induced by heterogeneous ultrafine grain size,the formation of deformation twins is inhibited at all temperatures.Consequently,only a slight increase of the deformation twins and stacking faults in the deformed specimens with a decreasing temperature,which leads to the relative temperature-independence of the ductility.The dislocation cutting mechanism of L1_(2) coherent precipitates and the heterodeformation induced(HDI)hardening both significantly contribute to the strain hardening so that an excellent combination of strength and ductility is obtained.Additionally,the evolution of lattice friction stress with deformation temperature is determined by quantitative analysis,indicating an approximately linear relationship between the lattice friction and temperature.The present work provides new insights into the strategy of achieving outstanding strength-ductility synergy of the MEA under the wide temperature range by coupling heterogeneous ultrafine-grained structure and coherent precipitation strategy.展开更多
基金supported by National Natural Science Foundation of China(No.52130509,92166105)the Science and Technology Innovation Program of Hunan Province(No.2021RC3096)145 project and Natural Science Foundation of Hunan Province(No.2023JJ30038).
文摘The key components of engineering machinery frequently failed due to working in the high load and high wear operating envir-onment.And the performance of the Fe-based alloy coatings typically employed need to be improved for fulfilling the service requirements.Herein,a TiC strengthened Fe-based alloy cladding layer,named TiC-Fe coating,was designed and prepared by plasma cladding technology.The frictional wear performance of coating under various loads was tested.The wear morphology of the coating was observed,and its wear mechanism was examined.The results indicated that the TiC-Fe coating was well formed and metallurgically bonded to the Q345C substrate.Its microstructure mainly consisted of Fe-Cr solid solution,α-Fe phase,(Fe,Cr)_(7)C_(3) phase and TiC phase.The coating exhibited an average microhardness of 980 HV0.2,which was about 5.4 times that of the Q345C substrate.The wear mass loss of the TiC-Fe coatings was much smaller than that of the Q345C substrate,which indicated that the wear resistance of the Q345C coating was superior to the substrate,and the wear mechanism of the coating was mainly attributed to the abrasive wear.
基金supported by the National Natural Science Foundation of China(Grant Nos.52105144,52075174,51725503 and 52005184)Shanghai Super Postdoctoral Incentive Plan(Grant No.2020134)+1 种基金China Postdoctoral Science Foundation(Grant No.2021M701201)Shanghai Sailing Program(Grant No.20YF1409600)。
文摘The improved understandings of the mechanical properties as well as deformation mechanisms at cryogenic temperatures are the prerequisite for realizing the application of any new engineering materials to cryogenic industries.Here,a(CoCrNi)_(94)Al_(3)Ti_(3) medium entropy alloy(MEA)with nanoscale L12 coherent precipitates and heterogeneous grain structures was prepared by codoping Al and Ti elements with subsequent cold rolling and heat treatment processes.The mechanical properties were evaluated at the temperature range of 293–113 K.The ultimate strength of the MEA increases almost linearly from 1326 to 1695 MPa as the temperature decreases from 293 to 113 K,while the total elongation remains approximately constant of~35%.The underlying deformation and strengthening mechanisms were investigated using various characterization techniques.Due to the effect of co-doped Al/Ti on channel width of the matrix and the increasing critical twinning stress induced by heterogeneous ultrafine grain size,the formation of deformation twins is inhibited at all temperatures.Consequently,only a slight increase of the deformation twins and stacking faults in the deformed specimens with a decreasing temperature,which leads to the relative temperature-independence of the ductility.The dislocation cutting mechanism of L1_(2) coherent precipitates and the heterodeformation induced(HDI)hardening both significantly contribute to the strain hardening so that an excellent combination of strength and ductility is obtained.Additionally,the evolution of lattice friction stress with deformation temperature is determined by quantitative analysis,indicating an approximately linear relationship between the lattice friction and temperature.The present work provides new insights into the strategy of achieving outstanding strength-ductility synergy of the MEA under the wide temperature range by coupling heterogeneous ultrafine-grained structure and coherent precipitation strategy.