A wide range of techniques has been developed to image biological samples at high spatial and temporal resolution.In this paper,we report recent results from deep-UV confocal fAuorescence microscopy to image inherent ...A wide range of techniques has been developed to image biological samples at high spatial and temporal resolution.In this paper,we report recent results from deep-UV confocal fAuorescence microscopy to image inherent emission from fuorophores such as tryptophan,and structured ilumination microscopy(SIM)of biological materials.One motivation for developing deep-UV fhuorescence imaging and SIM is to provide methods to complement our measurements in the emerging field of X-ray coherent diffractive imaging.展开更多
Inorganic lead halide perovskites are attractive optoelectronic materials owing to their relative stability compared to organic cation alternatives.The chemical vapor deposition(CVD) method offers potential for high q...Inorganic lead halide perovskites are attractive optoelectronic materials owing to their relative stability compared to organic cation alternatives.The chemical vapor deposition(CVD) method offers potential for high quality perovskite film growth.The deposition temperature is a critical parameter determining the film quality owing to the melting difference between the precursors.Here,perovskite films were deposited by the CVD method at various temperatures between 500-800℃.The perovskite phase converts from CsPb_(2)Br_(5) to CsPbBr_(3) gradually as the deposition temperature is increased.The grain size of the perovskite films also increases with temperature.The phase transition mechanism was clarified.The photoexcited state dynamics were investigated by spatially and temporally resolved fluorescence measurements.The perovskite film deposited under 750℃ condition is of the CsPbBr_(3) phase,showing low trap-state density and large crystalline grain size.A photodetector based on perovskite films shows high photocurrent and an on/off ratio of ~2.5×10^(4).展开更多
基金We acknowledge the support of the Australian Research Council for the Center of Excellence for Coherent X-ray Science(CE0561787).
文摘A wide range of techniques has been developed to image biological samples at high spatial and temporal resolution.In this paper,we report recent results from deep-UV confocal fAuorescence microscopy to image inherent emission from fuorophores such as tryptophan,and structured ilumination microscopy(SIM)of biological materials.One motivation for developing deep-UV fhuorescence imaging and SIM is to provide methods to complement our measurements in the emerging field of X-ray coherent diffractive imaging.
基金supported by the National Natural Science Foundation of China(Nos.61804015,11574181)Natural Science Foundation of Jiangsu Province(No.BK20180181)+1 种基金the Natural Science Foundation of Jiangsu Higher Education(No.17KJB140001)support from the ARC Centre of Excellence in Exciton Science(No.CE170100026)。
文摘Inorganic lead halide perovskites are attractive optoelectronic materials owing to their relative stability compared to organic cation alternatives.The chemical vapor deposition(CVD) method offers potential for high quality perovskite film growth.The deposition temperature is a critical parameter determining the film quality owing to the melting difference between the precursors.Here,perovskite films were deposited by the CVD method at various temperatures between 500-800℃.The perovskite phase converts from CsPb_(2)Br_(5) to CsPbBr_(3) gradually as the deposition temperature is increased.The grain size of the perovskite films also increases with temperature.The phase transition mechanism was clarified.The photoexcited state dynamics were investigated by spatially and temporally resolved fluorescence measurements.The perovskite film deposited under 750℃ condition is of the CsPbBr_(3) phase,showing low trap-state density and large crystalline grain size.A photodetector based on perovskite films shows high photocurrent and an on/off ratio of ~2.5×10^(4).