期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
中国北方草地生态系统服务评估 被引量:6
1
作者 脱登峰 卢琦 +4 位作者 却晓娥 程磊磊 杨岩岩 高攀 崔桂鹏 《生态学报》 CAS CSCD 北大核心 2024年第2期455-462,共8页
北方草地是我国天然草地主体部分,其生态功能对提升生态系统稳定性、保障国家生态安全具有重要的作用。在北方草地生态功能分区基础上,开展2011—2015年不同功能区内防风固沙、土壤保持、水源涵养等生态功能评估,探明其现状和空间格局,... 北方草地是我国天然草地主体部分,其生态功能对提升生态系统稳定性、保障国家生态安全具有重要的作用。在北方草地生态功能分区基础上,开展2011—2015年不同功能区内防风固沙、土壤保持、水源涵养等生态功能评估,探明其现状和空间格局,为北方草地生态功能分区研究提供评估数据,也为推进草地生态系统保护与修复工作提供科技支撑。结果表明:(1)北方草地防风固沙能力为32.44 t hm^(-2) a^(-1),防风固沙量为89.22亿t/a。半干旱草原区防风固沙能力和固沙量最大,分别为68.76 t hm^(-2) a^(-1)和29.16亿t/a,其固沙量占北方草地固沙总量的32.68%。(2)北方草地土壤保持能力为124.5 t hm^(-2) a^(-1),土壤保持量为243.59亿t/a。土壤保持功能的空间异质性较大,暖性灌草丛区土壤保持能力最大,为431.52 t hm^(-2) a^(-1);高寒草甸区土壤保持量最多,为105.36亿t/a,占北方草地土壤保持总量的43.19%。(3)北方草地水源涵养能力为93.03 m^(3) hm^(-2) a^(-1),水源涵养量为288.98亿m^(3)/a。高寒草甸区和高寒草原区水源涵养能力较大,分别为211.09 m^(3) hm^(-2) a^(-1)和118.04 m^(3) hm^(-2) a^(-1)。两个区域的水源涵养量也较多,分别为125.36亿m^(3)/a和72.13亿m^(3)/a,合占北方草地水源涵养总量的68.34%。整体上,北方半干旱草原区、暖性灌草丛区、高寒草甸区和高寒草原区对发挥我国草地防风固沙、土壤保持、水源涵养等生态多功能效益、提升生态系统服务和稳定性具有极其重要的作用。 展开更多
关键词 草地生态系统 生态功能分区 生态功能评估 空间格局 北方地区
下载PDF
敦煌西湖荒漠⁃湿地生态系统优势物种生态位研究 被引量:13
2
作者 董雪 李永华 +10 位作者 辛智鸣 姚斌 包岩峰 脱登峰 扆凡 段瑞兵 李新乐 汪静 孙志成 王海 陈旭 《生态学报》 CAS CSCD 北大核心 2020年第19期6841-6849,共9页
水文情势改变会引起土壤盐分变化,直接影响到荒漠⁃湿地生态系统植被的分布与演替。基于对57个样地、171个样方植物物种分布影响较大的土壤pH值和土壤电导率两个环境因子,将其划分为6个梯度等级,测度分析了敦煌西湖植被群落中15个主要优... 水文情势改变会引起土壤盐分变化,直接影响到荒漠⁃湿地生态系统植被的分布与演替。基于对57个样地、171个样方植物物种分布影响较大的土壤pH值和土壤电导率两个环境因子,将其划分为6个梯度等级,测度分析了敦煌西湖植被群落中15个主要优势种的生态位特征,了解不同物种利用资源和占据生态空间的能力,对维持和科学保育植物群落的多样性具有重要意义。结果表明:(1)在土壤pH值和电导率梯度两个资源维上,多枝柽柳和芦苇的重要值和生态位宽度均较大,说明这两个物种适应能力强能够较好地利用环境资源,分布范围大且均匀。它们作为敦煌西湖植被群落中的广域种,具有重要的生态地位和作用。其次生态位较宽的疏叶骆驼刺、胡杨和苏枸杞对环境因子也具有较强的适应能力。(2)两个土壤因子梯度下植物种群生态位宽度相似,但也存在差异。如泡泡刺、蒙古沙枣在土壤pH值梯度资源维上的生态位宽度值远大于在土壤电导率梯度资源维上,但尖叶盐爪爪和甘蒙柽柳在土壤电导率梯度资源维上生态位宽度较大,表现出较强的耐盐能力,从而说明这些物种对不同土壤因子的利用能力和适应性不完全相同。(3)在两个资源维上优势物种间的生态位重叠值小于0.5的种对均为61对,占总种对的58.10%,因此生态位重叠值整体保持在较低水平,说明物种在土壤pH值和土壤电导率两个环境梯度上生态位分化明显。(4)敦煌西湖优势物种间总体表现为不显著的负关联,表明物种之间处于竞争关系,但竞争强度不大且群落结构稳定性较弱。 展开更多
关键词 敦煌西湖 优势物种 生态位宽度 生态位重叠
下载PDF
Effect of Root Architecture on Structural Stability and Erodibility of Topsoils during Concentrated Flow in Hilly Loess Plateau 被引量:13
3
作者 LI Qiang LIU Guobin +2 位作者 ZHANG Zheng tuo dengfeng XU Mingxiang 《Chinese Geographical Science》 SCIE CSCD 2015年第6期757-764,共8页
Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of ... Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau. 展开更多
关键词 fibrous roots tap roots root density soil structural properties soil anti-scouribility hilly Loess Plateau China
下载PDF
Interactions between wind and water erosion change sediment yield and particle distribution under simulated conditions 被引量:9
4
作者 tuo dengfeng XU Mingxiang +1 位作者 ZHAO Yunge GAO Liqian 《Journal of Arid Land》 SCIE CSCD 2015年第5期590-598,共9页
Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion o... Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region. 展开更多
关键词 sediment yield particle-size distribution fractal dimension wind and water erosion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部