To explore thin transparent electroluminescence and electric conductive films by sol-gel technique, Sb2O3 doped n-type ZnO ceramics powders were prepared by sol-gel technique and photoluminescence properties were meas...To explore thin transparent electroluminescence and electric conductive films by sol-gel technique, Sb2O3 doped n-type ZnO ceramics powders were prepared by sol-gel technique and photoluminescence properties were measured. Then, the influences of composition and heat treatment temperature on photoluminescence properties were investigated in detail. With respect to the dopant concentration, about 1mol% addition of Sb2O3 was effective to increase photoluminescence intensity. With respect to heat treatment temperature, 800℃ was appropriate, and rather higher heat treatment temperature resulted in the formation of Zn7Sb2O12 and decrease the intensity. The excited ultraviolet wavelength of 200nm was proper to intense photoluminescence.展开更多
文摘To explore thin transparent electroluminescence and electric conductive films by sol-gel technique, Sb2O3 doped n-type ZnO ceramics powders were prepared by sol-gel technique and photoluminescence properties were measured. Then, the influences of composition and heat treatment temperature on photoluminescence properties were investigated in detail. With respect to the dopant concentration, about 1mol% addition of Sb2O3 was effective to increase photoluminescence intensity. With respect to heat treatment temperature, 800℃ was appropriate, and rather higher heat treatment temperature resulted in the formation of Zn7Sb2O12 and decrease the intensity. The excited ultraviolet wavelength of 200nm was proper to intense photoluminescence.