The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction b...The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.展开更多
The bony skeleton is continuously renewed throughout adult life by the bone remodeling process,in which old or damaged bone is removed by osteoclasts via largely unknown mechanisms.Osteocytes regulate bone remodeling ...The bony skeleton is continuously renewed throughout adult life by the bone remodeling process,in which old or damaged bone is removed by osteoclasts via largely unknown mechanisms.Osteocytes regulate bone remodeling by producing the osteoclast differentiation factor RANKL(encoded by the TNFSF11 gene).However,the precise mechanisms underlying RANKL expression in osteocytes are still elusive.Here,we explored the epigenomic landscape of osteocytic cells and identified a hitherto-undescribed osteocytic cell-specific intronic enhancer in the TNFSF11 gene locus.Bioinformatics analyses showed that transcription factors involved in cell death and senescence act on this intronic enhancer region.Single-cell transcriptomic data analysis demonstrated that cell death signaling increased RANKL expression in osteocytic cells.Genetic deletion of the intronic enhancer led to a high-bone-mass phenotype with decreased levels of RANKL in osteocytic cells and osteoclastogenesis in the adult stage,while RANKL expression was not affected in osteoblasts or lymphocytes.These data suggest that osteocytes may utilize a specialized regulatory element to facilitate osteoclast formation at the bone surface to be resorbed by linking signals from cellular senescence/death and RANKL expression.展开更多
AIM To clarify the roles of TWEAK and its receptor Fn14 in 5-fluorouracil(5-FU)-induced diarrhea.METHODS Diarrhea was induced in wild-type(WT), Fn14 knockout(KO), and IL-13 receptor(IL-13R)α1 KO BALB/c mice using a s...AIM To clarify the roles of TWEAK and its receptor Fn14 in 5-fluorouracil(5-FU)-induced diarrhea.METHODS Diarrhea was induced in wild-type(WT), Fn14 knockout(KO), and IL-13 receptor(IL-13R)α1 KO BALB/c mice using a single injection of 5-FU. Histological analysis, cytokine analysis, and flow cytometry was performed on ileal tissues and cells. Murine colon carcinomabearing mice were co-treated with an anti-TWEAK antibody and 5-FU. Embryonic fibroblast response to cytokines was also analyzed.RESULTS5-FU induced high Fn14 expression in epithelial cells. The severity of 5-FU-induced diarrhea was lower in Fn14 KO mice compared with WT mice. Administration of anti-TWEAK antibody reduced 5-FU-induced diarrhea without affecting the antitumor effects of 5-FU in vivo. 5-FU-induced expression of IL-13, IL-17 A, TNF-α, and IFN-γ in the ileum was Fn14 dependent. The severity of 5-FU-induced diarrhea was lower in IL-13Rα1 KO mice, indicating major role for IL-13 signaling via IL-13Rα1 in pathogenesis. We found that IL-13Rα2, an IL-13 neutralizing/cell protective receptor, was strongly induced by IL-33 in vitro and in vivo. IL-13Rα2 was upregulated in the ileum of 5-FU-treated Fn14 KO mice. Thus, the deletion of Fn14 upregulated IL-13Rα2 expression, which reduced IL-13 expression and activity. CONCLUSION Disruption of the TWEAK/Fn14 pathway affects several interconnected pathways, including those associated with IL-13, IL-33, and IL-13Rα2, to attenuate 5-FUinduced intestinal side effects.展开更多
基金supported in part by the Japan Agency for Medical Research and Development (AMED) under grant number JP20ek0410073, JP23ek0410108, JP22ek0410100, AMEDCREST under grant number JP19gm1210008 and AMED-PRIME under grant number JP21gm6310029, the AMED Japan Initiative for World leading Vaccine Research and Development Centers (JP223fa627001)Japan Society for the Promotion of Science (JSPS): Scientific Research S (21H05046), Scientific Research B (21H03104, 22H03195, and 22H02844) and Challenging Research (20K21515 and 21K18254)+3 种基金the JST FOREST Program (JPMJFR2261, JPMJFR205Z)Y.A. was supported by a JSPS Research Fellowship for Young Scientists (23KJ1949)Japanese Society for Immunology (JSI)Kibou Scholarship for Doctoral Students in Immunology。
文摘The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.
基金supported in part by the Japan Agency for Medical Research and Development (AMED) (JP22ek0410073 and JP23ek0410108h0001)AMED-CREST (JP22gm1210008)+7 种基金AMED-PRIME (JP22gm6310029h0001)the AMED Japan Initiative for Worldleading Vaccine Research and Development Centers (233fa627001h0002)Grants-in-Aid for Scientific Research S (21H05046)Scientific Research B (21H03104,22H03195,and 22H02844)Challenging Research (21K18254)the JST FOREST Program (JPMJFR205Z)supported by a JSPS Research Fellowship for Young Scientists (19J21942)a JSPS Postdoctoral Fellowships for Overseas Researchers (22F22108)。
文摘The bony skeleton is continuously renewed throughout adult life by the bone remodeling process,in which old or damaged bone is removed by osteoclasts via largely unknown mechanisms.Osteocytes regulate bone remodeling by producing the osteoclast differentiation factor RANKL(encoded by the TNFSF11 gene).However,the precise mechanisms underlying RANKL expression in osteocytes are still elusive.Here,we explored the epigenomic landscape of osteocytic cells and identified a hitherto-undescribed osteocytic cell-specific intronic enhancer in the TNFSF11 gene locus.Bioinformatics analyses showed that transcription factors involved in cell death and senescence act on this intronic enhancer region.Single-cell transcriptomic data analysis demonstrated that cell death signaling increased RANKL expression in osteocytic cells.Genetic deletion of the intronic enhancer led to a high-bone-mass phenotype with decreased levels of RANKL in osteocytic cells and osteoclastogenesis in the adult stage,while RANKL expression was not affected in osteoblasts or lymphocytes.These data suggest that osteocytes may utilize a specialized regulatory element to facilitate osteoclast formation at the bone surface to be resorbed by linking signals from cellular senescence/death and RANKL expression.
基金Supported by the Grants-in-Aid for Scientific Research,No.[B]5H04503 and No.[C]25460965,No.16K09299 from the Ministry of Education,Culture,Sports,Science,and Technologythe National Center for Global Health and Medicine,No.23-101,No.25-104,No.26-110,No.26-117,and No.27-1406the MEXT-Supported Program for the Strategic Research Foundation at Private Universities for Waseda University
文摘AIM To clarify the roles of TWEAK and its receptor Fn14 in 5-fluorouracil(5-FU)-induced diarrhea.METHODS Diarrhea was induced in wild-type(WT), Fn14 knockout(KO), and IL-13 receptor(IL-13R)α1 KO BALB/c mice using a single injection of 5-FU. Histological analysis, cytokine analysis, and flow cytometry was performed on ileal tissues and cells. Murine colon carcinomabearing mice were co-treated with an anti-TWEAK antibody and 5-FU. Embryonic fibroblast response to cytokines was also analyzed.RESULTS5-FU induced high Fn14 expression in epithelial cells. The severity of 5-FU-induced diarrhea was lower in Fn14 KO mice compared with WT mice. Administration of anti-TWEAK antibody reduced 5-FU-induced diarrhea without affecting the antitumor effects of 5-FU in vivo. 5-FU-induced expression of IL-13, IL-17 A, TNF-α, and IFN-γ in the ileum was Fn14 dependent. The severity of 5-FU-induced diarrhea was lower in IL-13Rα1 KO mice, indicating major role for IL-13 signaling via IL-13Rα1 in pathogenesis. We found that IL-13Rα2, an IL-13 neutralizing/cell protective receptor, was strongly induced by IL-33 in vitro and in vivo. IL-13Rα2 was upregulated in the ileum of 5-FU-treated Fn14 KO mice. Thus, the deletion of Fn14 upregulated IL-13Rα2 expression, which reduced IL-13 expression and activity. CONCLUSION Disruption of the TWEAK/Fn14 pathway affects several interconnected pathways, including those associated with IL-13, IL-33, and IL-13Rα2, to attenuate 5-FUinduced intestinal side effects.