A commercially available dental Glass Ionomer Cement (GIC) was studied after setting at room temperature (300 K) to understand its DC electrical conductivity, dielectric and thermal properties. The dental GIC’s are s...A commercially available dental Glass Ionomer Cement (GIC) was studied after setting at room temperature (300 K) to understand its DC electrical conductivity, dielectric and thermal properties. The dental GIC’s are supposed to have free mobile charge carriers like F- ions. Interestingly this material loses its conductivity above 80°C and behaves like a non-polar substance. The frequency dependent dielectric studies also indicate the loss of mobile charge carriers in the samples annealed at 80°C. The DSC and TGA studies indicate that the material loses H2O exothermically at 100°C. This is attributed to the onset of a secondary setting reaction.展开更多
文摘A commercially available dental Glass Ionomer Cement (GIC) was studied after setting at room temperature (300 K) to understand its DC electrical conductivity, dielectric and thermal properties. The dental GIC’s are supposed to have free mobile charge carriers like F- ions. Interestingly this material loses its conductivity above 80°C and behaves like a non-polar substance. The frequency dependent dielectric studies also indicate the loss of mobile charge carriers in the samples annealed at 80°C. The DSC and TGA studies indicate that the material loses H2O exothermically at 100°C. This is attributed to the onset of a secondary setting reaction.