期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Machine Learning-Based Predictions on the Self-Heating Characteristics of Nanocomposites with Hybrid Fillers
1
作者 taegeon kil D.I.Jang +1 位作者 H.N.Yoon Beomjoo Yang 《Computers, Materials & Continua》 SCIE EI 2022年第6期4487-4502,共16页
A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient(NTC)effect detection of nanocomposites incorporating carbon nanotube(CNT)and carbon fiber(CF)is proposed... A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient(NTC)effect detection of nanocomposites incorporating carbon nanotube(CNT)and carbon fiber(CF)is proposed.The CNT content was fixed at 4.0 wt.%,and CFs having three different lengths(0.1,3 and 6 mm)at dosage of 1.0 wt.%were added to fabricate the specimens.The self-heating properties of the specimens were evaluated via self-heating tests.Based on the experiment results,two types of artificial neural network(ANN)models were constructed to predict the surface temperature and electrical resistance,and to detect a severe NTC effect.The present predictions were compared with experimental values to verify the applicability of the proposed ANN models.The ANN model for data prediction was able to predict the surface temperature and electrical resistance closely,with corresponding R-squared value of 0.91 and 0.97,respectively.The ANN model for data detection could detect the severe NTC effect occurred in the nanocomposites under the self-heating condition,as evidenced by the accuracy and sensitivity values exceeding 0.7 in all criteria. 展开更多
关键词 Machine learning NANOCOMPOSITES carbon fillers SELF-HEATING negative temperature coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部