期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Trichoderma-Induced Improvement in Growth, Photosynthetic Pigments, Proline, and Glutathione Levels in Cucurbita pepo Seedlings under Salt Stress 被引量:4
1
作者 Mona H.Soliman taghreed s.alnusaire +5 位作者 Nessreen FAbdelbaky Aisha A.M.Alayafi Mirza Hasanuzzaman Mohamed M.Rowezak Mohamed El-Esawi Amr Elkelish 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第3期473-486,共14页
Salt stress is one of the major abiotic stress in plants.However,traditional approaches are not always efficient in conferring salt tolerance.Experiments were conducted to understand the role of Trichoderma spp.(T.har... Salt stress is one of the major abiotic stress in plants.However,traditional approaches are not always efficient in conferring salt tolerance.Experiments were conducted to understand the role of Trichoderma spp.(T.harzianum and T.viride)in growth,chlorophyll(Chl)synthesis,and proline accumulation of C.pepo exposed to salinity stress.There were three salt stress(50,100,and 150 mM NaCl)lavels and three different Trichoderma inoculation viz.T.harzianum,T.viride,and T.harzianum+T.viride.Salt stress significantly declined the growth in terms of the shoot and root lengths;however,it was improved by the inoculation of Trichoderma spp.C.pepo inoculated with Trichoderma exhibited increased synthesis of pigments like chl a,chl b,carotenoids,and anthocyanins under normal conditions.It was interesting to observe that such positive effects were maintained under salt-stressed conditions,as reflected by the amelioration of the salinity-mediated decline in growth,physiology and antioxidant defense.The inoculation of Trichoderma spp.enhanced the synthesis of proline,glutathione,proteins and increased the relative water content.In addition,Trichoderma inoculation increased membrane stability and reduced the generation of hydrogen peroxide.Therefore,Trichoderma spp.can be exploited either individually or in combination to enhance the growth and physiology of C.pepo under saline conditions. 展开更多
关键词 Vegetable crop antioxidant PROLINE NaCl CUCURBITA plant-microbe interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部