In this paper, we compare a dual-band, square spiral microstrip patch antenna constructed from Multi-Walled Carbon Nanotubes (MWCNT) ink for wearable application simulated by Computer Simulation Technology Microwave S...In this paper, we compare a dual-band, square spiral microstrip patch antenna constructed from Multi-Walled Carbon Nanotubes (MWCNT) ink for wearable application simulated by Computer Simulation Technology Microwave Studio (CST MWS) by our work simulated by Advanced Design System (ADS) electromagnetic simulator using the same material characterization. The reflection coefficient is –12 dB at 1.2276 GHz for MWCNT and –13 dB at 1.25 GHz for the copper simulated by CST MWS and reflection coefficient is –12.235 dB at 1.234 GHz for MWCNT and –18.36 dB at 1.243 GHz for the copper simulated by ADS and the reflection coefficient is –27dB at 2.47 GHz for MWCNT and –13 dB at 2.53 GHz for the copper simulated by CST MWS and the reflection coefficient is –26.08 dB at 2.48 GHz for MWCNT and –17.031 dB at 2.47 GHz for the copper simulated by ADS. We show the meandering of the surface current on the radiating in spiral patch. The antenna gain is found to be –12.5 dBi at 1.22 GHz for MWCNT and is found –12.05 dBi at 1.25 GHz at CST MWS and the antenna gain is found to be –11.85 dBi at 1.235 GHz for MWCNT and is found –12.25 dBi at 1.243 GHz at ADS and the antenna gain is found to be –4.25 dBi at 2.47 GHz for MWCNT and is found –4.01 dBi at 2.53 GHz at CST MWS and the antenna gain is found to be –4.23 dBi at 2.47 GHz for MWCNT and is found –4.88 dBi at 2.45 GHz at ADS. We show a close agreement in the results obtained by the two simulation software's CST MWS and ADS. The results are given for both MWCNT and Copper characterizations.展开更多
文摘In this paper, we compare a dual-band, square spiral microstrip patch antenna constructed from Multi-Walled Carbon Nanotubes (MWCNT) ink for wearable application simulated by Computer Simulation Technology Microwave Studio (CST MWS) by our work simulated by Advanced Design System (ADS) electromagnetic simulator using the same material characterization. The reflection coefficient is –12 dB at 1.2276 GHz for MWCNT and –13 dB at 1.25 GHz for the copper simulated by CST MWS and reflection coefficient is –12.235 dB at 1.234 GHz for MWCNT and –18.36 dB at 1.243 GHz for the copper simulated by ADS and the reflection coefficient is –27dB at 2.47 GHz for MWCNT and –13 dB at 2.53 GHz for the copper simulated by CST MWS and the reflection coefficient is –26.08 dB at 2.48 GHz for MWCNT and –17.031 dB at 2.47 GHz for the copper simulated by ADS. We show the meandering of the surface current on the radiating in spiral patch. The antenna gain is found to be –12.5 dBi at 1.22 GHz for MWCNT and is found –12.05 dBi at 1.25 GHz at CST MWS and the antenna gain is found to be –11.85 dBi at 1.235 GHz for MWCNT and is found –12.25 dBi at 1.243 GHz at ADS and the antenna gain is found to be –4.25 dBi at 2.47 GHz for MWCNT and is found –4.01 dBi at 2.53 GHz at CST MWS and the antenna gain is found to be –4.23 dBi at 2.47 GHz for MWCNT and is found –4.88 dBi at 2.45 GHz at ADS. We show a close agreement in the results obtained by the two simulation software's CST MWS and ADS. The results are given for both MWCNT and Copper characterizations.