Crystal and molecular structure of (2.6-dipropylphenylamidc) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained tyom a mixture...Crystal and molecular structure of (2.6-dipropylphenylamidc) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained tyom a mixture of ether/hexane as orthorhombic, with a = 12.658 (3 ) A. b = 16.62 (3) A. c = 11 .760 (2) A. V = 2474,2 (9) A. Z = 4. space group Pnma. R = 0.0399. Compound I compose of the R -bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.展开更多
基金This xvork ovas suppoT'ted by the National Natural Science Foundation. SINOPEC under grant! No.29734141. the Foundation of
文摘Crystal and molecular structure of (2.6-dipropylphenylamidc) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained tyom a mixture of ether/hexane as orthorhombic, with a = 12.658 (3 ) A. b = 16.62 (3) A. c = 11 .760 (2) A. V = 2474,2 (9) A. Z = 4. space group Pnma. R = 0.0399. Compound I compose of the R -bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.