期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
BMPRⅡ^(+)neural precursor cells isolated and characterized from organotypic neurospheres:an in vitro model of human fetal spinal cord development 被引量:1
1
作者 Michael W.Weible II Michael D.Lovelace +2 位作者 Hamish D.Mundell Tsz Wai Rosita Pang tailoi chan-ling 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期447-457,共11页
Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not... Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies. 展开更多
关键词 BMPRⅡ bone morphogenetic protein histotypic human spinal cord development leukemia inhibitory factor NEUROSPHERE ORGANOTYPIC reaggregate sensory columns
下载PDF
P2X7 receptor signaling during adult hippocampal neurogenesis 被引量:3
2
作者 Hannah C. Leeson tailoi chan-ling +3 位作者 Michael D. Lovelace Jeremy C. Brownlie Ben J. Gu Michael W. Weible II 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1684-1694,共11页
Neurogenesis is a persistent and essential feature of the adult mammalian hippocampus.Granular neurons generated from resident pools of stem or progenitor cells provide a mechanism for the formation and consolidation ... Neurogenesis is a persistent and essential feature of the adult mammalian hippocampus.Granular neurons generated from resident pools of stem or progenitor cells provide a mechanism for the formation and consolidation of new memories.Regulation of hippocampal neurogenesis is complex and multifaceted,and numerous signaling pathways converge to modulate cell proliferation,apoptosis,and clearance of cellular debris,as well as synaptic integration of newborn immature neurons.The expression of functional P2X7 receptors in the central nervous system has attracted much interest and the regulatory role of this purinergic receptor during adult neurogenesis has only recently begun to be explored.P2X7 receptors are exceptionally versatile:in their canonical role they act as adenosine triphosphate-gated calcium channels and facilitate calcium-signaling cascades exerting control over the cell via calcium-encoded sensory proteins and transcription factor activation.P2X7 also mediates transmembrane pore formation to regulate cytokine release and facilitate extracellular communication,and when persistently stimulated by high extracellular adenosine triphosphate levels large P2X7 pores form,which induce apoptotic cell death through cytosolic ion dysregulation.Lastly,as a scavenger receptor P2X7 directly facilitates phagocytosis of the cellular debris that arises during neurogenesis,as well as during some disease states.Understanding how P2X7 receptors regulate the physiology of stem and progenitor cells in the adult hippocampus is an important step towards developing useful therapeutic models for regenerative medicine.This review considers the relevant aspects of adult hippocampal neurogenesis and explores how P2X7 receptor activity may influence the molecular physiology of the hippocampus,and neural stem and progenitor cells. 展开更多
关键词 P2X7 P2X7R adult neurogenesis NEURAL stem CELLS NEURAL PROGENITOR CELLS hippocampus SGZ calcium SIGNALING PURINERGIC SIGNALING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部