Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties o...Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided.展开更多
基金supported by Federal State-Funded Educational Institution of Higher Vocational Education "Moscow State University of Railway Engineering" (MGUPS (MIIT)), JSC "Yamaltransstroy" and LLC "Transstroymekhanisatsiya"
文摘Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided.