期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Heavy metal removal from aqueous solution using carbonaceous K_2S-impregnated adsorbent 被引量:2
1
作者 takaaki wajima Kenji Murakami +1 位作者 Takahiro Kato Katsuyasu Sugawara 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第12期1730-1734,共5页
A novel carbonaceous adsorbent for heavy metal removal was prepared from raw coal by one-step simple sulfur impregnation using K2S. Raw coal was mixed with K2S powder and then heated at 800℃ for 30 min in nitrogen to... A novel carbonaceous adsorbent for heavy metal removal was prepared from raw coal by one-step simple sulfur impregnation using K2S. Raw coal was mixed with K2S powder and then heated at 800℃ for 30 min in nitrogen to produce K2S char. The sulfur content and form in K2S char were determined, and the ability of K2S char to adsorb Zn^2+, Cd^2+ and Pb^2+ was examined. The K2S impregnation was effective at impregnating sulfur into coal, especially in the form of elemental, thiophenic and sulfatic sulfur. The sulfur content of K2S char was higher than those of raw coal and pyrolysis char. The Zn^2+ removal in 2.4 mmol/L of Zn^2+ solution by K2S char was higher than raw coal with the removal rate of 100%. K2S char adsorbed Pb^2+ and Cd^2+ in 24 mmol/L of Pb^2+ and Cd^2+ solution with the removal rate of 97% and 35%, respectively. The elution extents of adsorbed Pb^2+ and Cd^2+ were zero in distilled water and 27% in 0.1 mol/L HCl solution. These results indicated that an effective adsorbent for heavy metal ions was prepared from coal using K2S sulfur impregnation, and that the adsorbed metals were strongly retained in K2S char. 展开更多
关键词 sulfur impregnation carbonaceous adsorbent K2S heavy metal adsorption
下载PDF
Preparation of HCl Gas Sorbent from Paper Sludge
2
作者 takaaki wajima 《Natural Resources》 2017年第4期291-299,共9页
Paper sludge (PS) is generated as an industrial waste during the manufacture of recycled paper products, and amounts discharged globally are increasing annually. On the other hands, hydrogen chloride (HCl) is an acidi... Paper sludge (PS) is generated as an industrial waste during the manufacture of recycled paper products, and amounts discharged globally are increasing annually. On the other hands, hydrogen chloride (HCl) is an acidic pollutant that is present in the flue gases of most municipal and hazardous waste incinerators. In this study, the removal of hydrogen chloride gas using the product from paper sludge at high temperatures (700oC) using a fixed-bed flow-type reactor was investigated. PS can be granulated with distilled water using granulators, and the particle shapes can be kept after calcination and alkali reaction. Calcined PS and the product after alkali reaction of calcined PS have amorphous phases and katoite (Ca3Al2(SiO4)(OH)8) phase, respectively, and both of these indicate HCl removal ability at high temperature (700oC). The product from calcined PS via alkali reaction has higher HCl fixation ability (78 mg/g) than calcined PS. Removal experiments for HCl gas showed that the removal process followed pseudo-second-order kinetics rather than pseudo-first-order kinetics. These results suggested that the product particles with HCl gas removal ability at high temperature can be prepared from PS using calcination and alkali reaction. 展开更多
关键词 PAPER SLUDGE HYDROGEN CHLORIDE Gas GRANULATION Katoite High Temperature
下载PDF
Alkali Fusion Synthesis of Zeolitic Materials from Waste Dehydrated Cake Discharged from Recycling of Construction Waste Soil
3
作者 takaaki wajima 《Natural Resources》 2017年第4期300-305,共6页
An inorganic cation exchanger, zeolitic material, was synthesized from dehydrated cake, which was discharged from recycling of construction waste soil, using the alkali fusion method. The waste clay was mixed with NaO... An inorganic cation exchanger, zeolitic material, was synthesized from dehydrated cake, which was discharged from recycling of construction waste soil, using the alkali fusion method. The waste clay was mixed with NaOH powder (the weight ratio of NaOH/waste clay = 1.0) and then heated at 300°C for 1 h to make a fused material. This fused material was then added to distilled water, and then heated at 90°C, 120°C, 150°C and 180°C for 12 h in reaction bombs under autogenous pressure in order to synthesize the cation exchanger. As a result, waste cake can be converted into fused material with high solubility, and zeolitic materials can be synthesized from the fused material. A mixture of zeolite-X and hydroxysodalite was synthesized at 90°C and 120°C, hydroxysodalite alone was synthesized at 150°C and 180°C. By increasing the synthesis temperature, the cation exchange capacity (CEC) of the product decreased, and the highest CEC of the product at 90°C, including zeolite-X, was 2.06 mmol/g, which is 64.3% of commercial zeolite-13X (3.2 mmol/g). 展开更多
关键词 WASTE CLAY ALKALI Fusion Zeolite-X Hydroxysodalite CATION Exchange Capacity
下载PDF
Removal of Ag(I) from Aqueous Solution by Japanese Natural Clinoptilolite
4
作者 takaaki wajima 《Advances in Chemical Engineering and Science》 2016年第4期470-487,共18页
The present study examined the adsorption of silver ion in aqueous solution onto natural clinoptilolite zeolite from Futatsui Mine, Akita Prefecture, Japan. The effects of various parameters, i.e., solution pH, adsorb... The present study examined the adsorption of silver ion in aqueous solution onto natural clinoptilolite zeolite from Futatsui Mine, Akita Prefecture, Japan. The effects of various parameters, i.e., solution pH, adsorbent dosage, adsorption time, silver ion solution concentration, and temperature, on silver ion adsorption process onto clinoptilolite were examined. Additionally, the thermodynamics of the silver ion adsorption process was investigated. The optimum pH for silver adsorption was determined to be around 4.0. The adsorption process could be well described by the Langmuir isotherm model. The calculated maximum adsorption capacity was 0.64 mmol/g. Adsorption kinetics studies were also conducted. The results showed that the adsorption process preferentially followed the pseudo-second-order kinetics model over the pseudo-first-order model. Furthermore, with decreasing aqueous solution temperatures, the adsorption kinetics became slower and the amount of silver ion adsorbed increased. The thermodynamic values, ΔG<sup>0</sup>, ΔH<sup>0</sup>, and ΔS<sup>0</sup>, indicated that adsorption was an exo-thermic and spontaneous process. 展开更多
关键词 CLINOPTILOLITE Ag(I) Removal ADSORPTION Natural Zeolite
下载PDF
Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb^(2+),NH_4^+and PO_4^(3-) from aqueous solution 被引量:4
5
作者 takaaki wajima Kenzo Munakata 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第5期718-724,共7页
Material conversion from paper sludge ash (PSA) in NaOH solution was attempted to synthesize the adsorbent for removal of inorganic pollutants, such as Pb^2+, NH^4+ and PO4^3- from aqueous solution. PSA of 0.5 g w... Material conversion from paper sludge ash (PSA) in NaOH solution was attempted to synthesize the adsorbent for removal of inorganic pollutants, such as Pb^2+, NH^4+ and PO4^3- from aqueous solution. PSA of 0.5 g was added into 10 mL of 3 mol/L NaOH solution, and then heated at 80, 120, and 160℃ for 6-48 hr to obtain the product. PSA mainly composed of two crystalline phases, gehlenite (Ca2Al2SiO7) and anorthite (CaAl2Si2O8), and amorphous phase. Hydroxysodalite (Na6Al6Si6O24-8H2O) was formed at 80℃, and anorthite dissolved, whereas gehlenite remained unaffected. Katoite (Ca3Al2SiO4(OH)8) was formed over 120℃, and hydroxycancrinite (Nas(OH)2Al6Si6O24·2H2O) was formed at 160℃, due to the dissolution of both gehlenite and anorthite. Specific surface areas of the products were almost same and were higher than that of raw ash. Cation exchange capacities (CECs) of the products were also higher than that of raw ash, and CEC obtained at lower temperature was higher. Removal abilities of products for Pb^2+, NH4+, and PO4^3- were higher than that of raw ash. With increasing reaction temperature, the removal efficiencies of Pb^2+ and NH4+ decreased due to the decrease of CEC of the product, while removal efficiency for PO4^3- was almost same. The concentrations of Si and AI in the solution and the crystalline phases in the solid during the reaction explain the formation of the product phases at each temperature. 展开更多
关键词 paper sludge ash hydrothermal synthesis gehlenite anorhite heavy metal ion ammonium ion phosphate ion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部