Skin is the largest organ of the human body. In recent years, concern regarding the cosmetics area has increased, and research studies on anti-aging therapy or cosmetics have been rapidly conducted. Skin cells are not...Skin is the largest organ of the human body. In recent years, concern regarding the cosmetics area has increased, and research studies on anti-aging therapy or cosmetics have been rapidly conducted. Skin cells are not only changing its shape but also its physical properties during the epidermal skin turnover process. Computational simulation can be useful in further understanding the mechanisms of skin formation. We propose a particle model that can handle complex biological phenomena, including cell interactions and is a suitable method for simulating skin formation. The particle model was applied to simulate three-dimensional skin formation accompanied by proliferation and cornification of skin cells. The simulation results represented and reproduced the epidermal skin turnover phenomenon.展开更多
文摘Skin is the largest organ of the human body. In recent years, concern regarding the cosmetics area has increased, and research studies on anti-aging therapy or cosmetics have been rapidly conducted. Skin cells are not only changing its shape but also its physical properties during the epidermal skin turnover process. Computational simulation can be useful in further understanding the mechanisms of skin formation. We propose a particle model that can handle complex biological phenomena, including cell interactions and is a suitable method for simulating skin formation. The particle model was applied to simulate three-dimensional skin formation accompanied by proliferation and cornification of skin cells. The simulation results represented and reproduced the epidermal skin turnover phenomenon.