Pentacene thin layers were deposited on Si with the native oxide at 80°C by remote-plasma-assisted deposition (RPAD) using hydrogen-plasma cell to supply atomic hydrogen radicals. The deposition rate was increase...Pentacene thin layers were deposited on Si with the native oxide at 80°C by remote-plasma-assisted deposition (RPAD) using hydrogen-plasma cell to supply atomic hydrogen radicals. The deposition rate was increased by RPAD comparing to that by non-excited hydrogen gas supply whereas thermal evaporation rate of pentacene from crucible was same in the both process. DFM and XRD studies showed the grain laterally grew in the thin film phase with the size above 10 μm by RPAD. First-principles molecular orbital calculations suggested pentacene is evaporated from crucible as the trimer or larger cluster but atomic hydrogen penetrated into the cluster enhances cracking of pentacene clusters to the monomer.展开更多
文摘Pentacene thin layers were deposited on Si with the native oxide at 80°C by remote-plasma-assisted deposition (RPAD) using hydrogen-plasma cell to supply atomic hydrogen radicals. The deposition rate was increased by RPAD comparing to that by non-excited hydrogen gas supply whereas thermal evaporation rate of pentacene from crucible was same in the both process. DFM and XRD studies showed the grain laterally grew in the thin film phase with the size above 10 μm by RPAD. First-principles molecular orbital calculations suggested pentacene is evaporated from crucible as the trimer or larger cluster but atomic hydrogen penetrated into the cluster enhances cracking of pentacene clusters to the monomer.