期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Influence of Stand-Alone Vertical Gas Vents on Aeration and Denitrification of Organic Municipal Waste Assessed by Two-Dimensional (2D) Lysimeters
1
作者 Tadis Dillon takayuki shimaoka Teppei Komiya 《Journal of Geoscience and Environment Protection》 2023年第12期209-228,共20页
Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtaili... Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations. 展开更多
关键词 Organic Waste Waste Stabilization Passive Aeration 2D Lysimeter COMSOL Multiphysics In-Situ Aeration
下载PDF
Assessing the Metal Recovery Value of Municipal Solid Waste Incineration Residues: Impact of Pretreatment on Fly Ash and Bottom Ash
2
作者 Pengfei Li takayuki shimaoka 《Journal of Geoscience and Environment Protection》 2023年第10期79-86,共8页
This paper focuses on evaluating the metal recovery potential of Municipal Solid Waste Incineration (MSWI) residues, with particular emphasis on the influence of pretreatment methods on MSWI fly ash and bottom ash. We... This paper focuses on evaluating the metal recovery potential of Municipal Solid Waste Incineration (MSWI) residues, with particular emphasis on the influence of pretreatment methods on MSWI fly ash and bottom ash. We assess the effectiveness of these pretreatments in enhancing the concentration of valuable metals and compare the metal content before and after treatment. Our findings reveal that water washing significantly enhances fly ash’s zinc and copper content, surpassing the minimum industrial-grade requirements. Mechanical sieving is an efficient pretreatment method for bottom ash, with the zinc concentration inversely related to particle size. Additionally, copper content peaks in the 1 - 2 mm particle size range for both bottom ash samples. These results provide valuable insights into the potential for metal recovery from MSWI residues. They hold significance for relevant research, engineering practices, and policy formulation. 展开更多
关键词 Water-Washing Mechanical Sieving ZINC Copper Lead
下载PDF
Feasibility of Natural Zeolite for Heavy Metal Stabilization in Municipal Solid Waste Incineration Fly Ash: A Novel Approach
3
作者 Mitali Nag Amirhomayoun Saffarzadeh takayuki shimaoka 《Journal of Geoscience and Environment Protection》 2022年第7期70-86,共17页
The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying ... The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying natural zeolite, namely mordenite, as an inexpensive adsorbent to assess its feasibility for the treatment of fly ash. Batch experiments were performed to investigate the effects of the influential parameters, such as metals initial ion concentration, dosage of adsorbent, liquid to solid (L/S) ratio, and equilibrium concentration of metal on the immobilization of Pb<sup>2</sup><sup>+</sup> and Zn<sup>2+</sup>, in a novel approach. Heavy metals removal efficiency increased with increasing the dosage of mordenite influenced by the media-specific surface area. Heavy metals adsorption is ascribed to various mechanisms of ion exchange and adsorption processes. The Langmuir and Freundlich isotherm models were investigated using the adsorption data. The adsorption process describes better in the Freundlich isotherm model compared to the Langmuir isotherm model with a high determination co-efficient (R<sup>2</sup>), especially for the adsorption of Pb<sup>2+</sup>. In addition, the affinity of mordenite to Pb<sup>2+</sup> was shown to be higher than that of Zn<sup>2+</sup>. This allows the use of mordenite to capture of Pb<sup>2+</sup> in MSWI fly ash. Results raise expectations about using mordenite as a low-cost material for treating MSWI fly ashes. The results show that heavy metal (Pb<sup>2+</sup> and Zn<sup>2+</sup>) removed by mordenite adsorbent is practical and effective. In order to achieve the higher efficiency on heavy metal stabilization in MSWI fly ash, additional experiments are necessary. 展开更多
关键词 Natural Zeolite MORDENITE Heavy Metals Fly ash ADSORPTION
下载PDF
Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives 被引量:1
4
作者 Boran WU Dongyang WANG +2 位作者 Xiaoli CHAI Fumitake TAKAHASHI takayuki shimaoka 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第4期43-51,共9页
Bottom ash is an inevitable by-product fi'om municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine a... Bottom ash is an inevitable by-product fi'om municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore ,investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%-0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250℃) in incinerators. 展开更多
关键词 Bottom ash ChlorineHeavy metals Waste inputs Synchrotron X-ray diffraction AlOCl
原文传递
Physical and mechanical properties of municipal solid waste incineration residues with cement and coal fly ash using X-ray Computed Tomography scanners
5
作者 Toshifumi MUKUNOKI Ta Thi HOAI +2 位作者 Daisuke FUKUSHIMA Teppei KOMIYA takayuki shimaoka 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2019年第3期640-652,共13页
A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e.,incineration residues) are commonly disposed as landfill.Meanwhile,reclamation of landfill sites to create a new land space after... A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e.,incineration residues) are commonly disposed as landfill.Meanwhile,reclamation of landfill sites to create a new land space after their closure becomes an important goal in the current fewer and fewer land availability scenario in many narrow countries.The objective of this study is to reclaim incineration residue materials in the landfill site by using cement and coal fly ash as stabilizers aiming at performing quality check as new developed materials before future construction.Indeed,physical and mechanical properties of these new materials should be initially examined at the micro scale,which is the primary fundamental for construction at larger scale.This research examines quantitative influences of using the combination of cement and coal fly ash at different ratio on the internal structure and ability of strength enhancement of incineration residues when suffering from loading.Couple of industrial and micro-focus X-ray computed tomography (CT) scanners combined with an image analysis technique were utilized to characterize and visualize the behavior and internal structure of the incineration residues-cement-coal fly ash mixture under the series of unconfined compression test and curing period effect.Nine types of cement solidified incineration residues in term of different curing period (i.e.,7,14,28 days) and coal fly ash addition content (i.e.,0%,9%,18%) were scanned before and after unconfined compression tests.It was shown that incineration residues solidified by cement and coal fly ash showed an increase in compression strength and deformation modulus with curing time and coal fly ash content.Three-dimension computed tomography images observation and analysis confirmed that solidified incineration residues including incineration bottom and fly ash as well as cement and coal fly ash have the deliquescent materials.Then,it was studied that stabilized parts play a more important role than spatial void distribution in increment or reduction of compression strength. 展开更多
关键词 mechanical property MUNICIPAL solid waste INCINERATION RESIDUES coal FLY ash unconfined compression test image analysis X-Ray COMPUTED Tomography scanners
原文传递
Lessons learned from the Ezgeleh-Sarpol Zahab earthquake of November 2017:status of damage and disposal of disaster waste
6
作者 Amirhomayoun Saffarzadeh takayuki shimaoka +1 位作者 Hirofumi Nakayama Saeed Afsari Fard 《Waste Disposal and Sustainable Energy》 2019年第4期301-317,共17页
A massive earthquake of magnitude Mw 7.3 shook Kermanshah Province in Western Iran along the Iraqi border on November 12,2017.The epicenter of the earthquake was approximately 10 km southwest of Ezgeleh Town in Kerman... A massive earthquake of magnitude Mw 7.3 shook Kermanshah Province in Western Iran along the Iraqi border on November 12,2017.The epicenter of the earthquake was approximately 10 km southwest of Ezgeleh Town in Kermanshah Province.Field observations almost 4 months after the disaster indicated that the earthquake had caused tremendous damage to most structures in both urban and rural areas,and left an enormous amount of disaster waste.To investigate the status of the dam-age and disposal of the disaster waste,remote sensing was conducted using an unmanned aerial vehicle(drone).Through the capture of low-altitude images by drone and the generation of 3D models,the quantity of debris accumulated in a waste disposal facility near Sarpol Zahab was estimated at approximately 480,000 m3.A compositional analysis of the disaster waste was performed using an imaging technique.This revealed that the disaster waste was largely composed of concrete(39.6%),hollow brick(35.4%),and gypsum(21.2%)in the urban area,whereas soil was the dominant component(77.4%)in the rural area.The damage caused to most buildings was essentially due to their non-standard construction.The manage-ment of debris from the damaged buildings was a critical issue for the authorities,and the lack of preparedness was a serious drawback that consumed an enormous amount of time,budget,and workforce.A practical post-disaster preparedness plan would help the decision-makers and the public to manage the otherwise overwhelming nature of the post-disaster conditions in a more reasonable manner. 展开更多
关键词 2017 Iran Earthquake Ezgeleh-Sarpol Zahab Disaster waste disposal Waste compositional analysis Remote sensing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部