期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Role of osteoclasts in regulating hematopoietic stem and progenitor cells 被引量:1
1
作者 takeshi miyamoto 《World Journal of Orthopedics》 2013年第4期198-206,共9页
Bone marrow(BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells(HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cel... Bone marrow(BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells(HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cells. HSCs produce their daughter cells throughout the lifespan of individuals and thus, maintaining HSCs is crucial for individual life. BM cavities provide a specialized microenvironment termed "niche" to support HSCs. Niches are composed of various types of cells such as osteoblasts, endothelial cells and reticular cells. Osteoclasts are unique cells which resorb bones and are required for BM cavity formation. Loss of osteoclast function or differentiation results in inhibition of BM cavity formation, an osteopetrotic phenotype. Osteoclasts are also reportedly required for hematopoietic stem and progenitor cell(HSPC) mobilization to the periphery from BM cavities. Thus, lack of osteoclasts likely results in inhibition of HSC maintenance and HSPC mobilization. However, we found that osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization by using three independent osteoclast-less animal models. In this review, I will discuss the roles of osteoclasts in hematopoietic stem cell maintenance and mobilization. 展开更多
关键词 OSTEOCLASTS Hematopoietic stem and PROGENITOR cell MOBILIZATION Receptor activator of nuclear factor kappa B ligand Osteomac OSTEOPETROSIS op/op C-Fos OSTEOPROTEGERIN
下载PDF
Characterizing human driver characteristics using an artificial neural network and a theoretical model
2
作者 Sangmyoeng Kim takeshi miyamoto +1 位作者 Tatsuya Kuboyama Yasuo Moriyoshi 《Control Theory and Technology》 EI CSCD 2022年第2期263-278,共16页
Human drivers seem to have different characteristics,so different drivers often yield different results from the same driving mode tests with identical vehicles and same chassis dynamometer.However,drivers with differ... Human drivers seem to have different characteristics,so different drivers often yield different results from the same driving mode tests with identical vehicles and same chassis dynamometer.However,drivers with different experiences often yield similar results under the same driving conditions.If the features of human drivers are known,the control inputs to each driver,including warnings,will be customized to optimize each man–machine vehicle system.Therefore,it is crucial to determine how to characterize human drivers quantitatively.This study proposes a method to estimate the parameters of a theoretical model of human drivers.The method uses an artificial neural network(ANN)model and a numerical procedure to interpret the identified ANN models theoretically.Our approach involves the following process.First,we specify each ANN driver model through chassis dynamometer tests performed by each human driver and vehicle.Subsequently,we obtain the parameters of a theoretical driver model using the ANN model for the corresponding driver.Specifically,we simulate the driver’s behaviors using the identified ANN models with controlled inputs.Finally,we estimate the theoretical driver model parameters using the numerical simulation results.A proportional-integral-differential(PID)control model is used as the theoretical model.The results of the parameter estimation indicate that the PID driver model parameter combination can characterize human drivers.Moreover,the results suggest that vehicular factors influence the parameter combinations of human drivers. 展开更多
关键词 Neural network IDENTIFICATION Driver model Chassis dynamometer Driver characteristics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部