期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Malaria Blood Smear Classification Using Deep Learning and Best Features Selection
1
作者 talha imran Muhammad Attique Khan +5 位作者 Muhammad Sharif Usman Tariq Yu-Dong Zhang Yunyoung Nam Yunja Nam Byeong-Gwon Kang 《Computers, Materials & Continua》 SCIE EI 2022年第1期1875-1891,共17页
Malaria is a critical health condition that affects both sultry and frigid region worldwide,giving rise to millions of cases of disease and thousands of deaths over the years.Malaria is caused by parasites that enter ... Malaria is a critical health condition that affects both sultry and frigid region worldwide,giving rise to millions of cases of disease and thousands of deaths over the years.Malaria is caused by parasites that enter the human red blood cells,grow there,and damage them over time.Therefore,it is diagnosed by a detailed examination of blood cells under the microscope.This is the most extensively used malaria diagnosis technique,but it yields limited and unreliable results due to the manual human involvement.In this work,an automated malaria blood smear classification model is proposed,which takes images of both infected and healthy cells and preprocesses themin the L^(*)a^(*)b^(*)color space by employing several contrast enhancement methods.Feature extraction is performed using two pretrained deep convolutional neural networks,DarkNet-53 and DenseNet-201.The features are subsequently agglutinated to be optimized through a nature-based feature reduction method called the whale optimization algorithm.Several classifiers are effectuated on the reduced features,and the achieved results excel in both accuracy and time compared to previously proposed methods. 展开更多
关键词 MALARIA PREPROCESSING deep learning features optimization CLASSIFICATION
下载PDF
A Particle Swarm Optimization Based Deep Learning Model for Vehicle Classification
2
作者 Adi Alhudhaif Ammar Saeed +4 位作者 talha imran Muhammad Kamran Ahmed S.Alghamdi Ahmed O.Aseeri Shtwai Alsubai 《Computer Systems Science & Engineering》 SCIE EI 2022年第1期223-235,共13页
Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact s... Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact system to assist in real-world problems and applications such as security,traffic analysis,and self-driving and autonomous vehicles.The recent revolution in the field of machine learning and artificial intelligence has provided an immense amount of support for image processing related problems and has overtaken the conventional,and handcrafted means of solving image analysis problems.In this paper,a combina-tion of pre-trained CNN GoogleNet and a nature-inspired problem optimization scheme,particle swarm optimization(PSO),was employed for autonomous vehi-cle classification.The model was trained on a vehicle image dataset obtained from Kaggle that has been suitably augmented.The trained model was classified using several classifiers;however,the Cubic SVM(CSVM)classifier was found to out-perform the others in both time consumption and accuracy(94.8%).The results obtained from empirical evaluations and statistical tests reveal that the model itself has shown to outperform the other related models not only in terms of accu-racy(94.8%)but also in terms of training time(82.7 s)and speed prediction(380 obs/sec). 展开更多
关键词 Vehicle classification intelligent transport system deep learning constrained machine learning particle swarm optimization CNN GoogleNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部