The Himalayan terrain is an epitome of ongoing convergence and geodetic deformation where both tectonic and non-tectonic forces prevail.In this study,the Gravity Recovery and Climate Experiment(GRACE)and Global Positi...The Himalayan terrain is an epitome of ongoing convergence and geodetic deformation where both tectonic and non-tectonic forces prevail.In this study,the Gravity Recovery and Climate Experiment(GRACE)and Global Positioning System(GPS)datasets are used to assess the impact of seasonal loading on deformation with seismicity in Nepal.The recorded GPS data from 21 Global Navigation Satellite System(GNSS)stations during 2017-2020 are processed with respect to ITRF14 and the Indian reference frame,and the Center for Space Research(CSR)mascon RL06 during 2002-2020 is adopted to estimate the terrestrial water storage(TWS)change over the Ganga-Brahmaputra River basin.The results indicate that the hydrological loading effect or TWS change shows high negative,high positive,and moderately positive values in pre-monsoon,co-monsoon,and post-monsoon months,respectively.The detrended GPS data of both horizontal and vertical components correlate with the seasonal TWS change using the Pearson correlation coefficient at each GNSS site.In addition,the correlation coefficient has been interpolated using inverse distance weighting to investigate the regional TWS influence on geodetic displacement.In the north component,the correlation coefficient ranges from-0.6 to 0.6.At the same time,the TWS is positively correlated with geodetic displacement(0.82)in the east component,and the correlation coefficient is negative(-0.69)in the vertical component.The negative correlation signifies an inverse relationship between seasonal TWS variation and geodetic displacements.The strain rate is estimated,which shows higher negative values in pre-monsoon than in post-monsoon.Similarly,the effect of seismicity is 47.90%for pre-monsoon,15.97%for co-monsoon,and 17.56%for post-monsoon.Thus we can infer that the seismicity decreases with the increase of seasonal hydrological loading.Furthermore,the effect of strain is much higher in pre-monsoon than in post-monsoon since the impact of co-monsoon continues to persist on a small scale in the post-monsoon season.展开更多
文摘The Himalayan terrain is an epitome of ongoing convergence and geodetic deformation where both tectonic and non-tectonic forces prevail.In this study,the Gravity Recovery and Climate Experiment(GRACE)and Global Positioning System(GPS)datasets are used to assess the impact of seasonal loading on deformation with seismicity in Nepal.The recorded GPS data from 21 Global Navigation Satellite System(GNSS)stations during 2017-2020 are processed with respect to ITRF14 and the Indian reference frame,and the Center for Space Research(CSR)mascon RL06 during 2002-2020 is adopted to estimate the terrestrial water storage(TWS)change over the Ganga-Brahmaputra River basin.The results indicate that the hydrological loading effect or TWS change shows high negative,high positive,and moderately positive values in pre-monsoon,co-monsoon,and post-monsoon months,respectively.The detrended GPS data of both horizontal and vertical components correlate with the seasonal TWS change using the Pearson correlation coefficient at each GNSS site.In addition,the correlation coefficient has been interpolated using inverse distance weighting to investigate the regional TWS influence on geodetic displacement.In the north component,the correlation coefficient ranges from-0.6 to 0.6.At the same time,the TWS is positively correlated with geodetic displacement(0.82)in the east component,and the correlation coefficient is negative(-0.69)in the vertical component.The negative correlation signifies an inverse relationship between seasonal TWS variation and geodetic displacements.The strain rate is estimated,which shows higher negative values in pre-monsoon than in post-monsoon.Similarly,the effect of seismicity is 47.90%for pre-monsoon,15.97%for co-monsoon,and 17.56%for post-monsoon.Thus we can infer that the seismicity decreases with the increase of seasonal hydrological loading.Furthermore,the effect of strain is much higher in pre-monsoon than in post-monsoon since the impact of co-monsoon continues to persist on a small scale in the post-monsoon season.