To explore the tensile property parameters in the structural design of bridge deck link slabs made by ecological high ductility cementitious composites (Eco-HDCC), the tensile properties of Eco-HDCC exposed to interac...To explore the tensile property parameters in the structural design of bridge deck link slabs made by ecological high ductility cementitious composites (Eco-HDCC), the tensile properties of Eco-HDCC exposed to interactive freeze-thaw-carbonation cycles and single carbonation cycles were studied. The carbonation front of Eco-HDCC was determined by X-ray diffraction and differential scanning calorimetry-thermal gravimetric methods. Results indicate that the carbonation front of Eco-HDCC after interaction tests is deeper than that of Eco-HDCC after single carbonation tests. In addition, the ultimate tensile strength for Eco-HDCC shows an increasing trend after the interaction of 1 to 5 cycles compared with that of virgin specimens, while the ultimate tensile strength decreases after the interaction of 10 to 15 cycles. For single carbonation tests, the ultimate tensile strength of Eco-HDCC increases as cycles increase. After being subjected to interaction and single carbonation environments, both the ultimate tensile strain and tensile strain energy of Eco-HDCC decrease as cycles increase, and the decrease degrees of Eco-HDCC after interaction cycles are larger than those of Eco-HDCC after single carbonation. For general consideration, the tensile stress-strain relationship of Eco-HDCC after the interaction of 15 cycles can be adopted in the design of bridge deck link slabs for the purpose of safety.展开更多
Erbium dihydride thin films were prepared by pulsed laser deposition on Si(100) substrates using erbium target under different low hydrogen pressures. The properties of these films were examined by atomic force micr...Erbium dihydride thin films were prepared by pulsed laser deposition on Si(100) substrates using erbium target under different low hydrogen pressures. The properties of these films were examined by atomic force microscopy, X-ray diffractometer, transmission electron microscopy, and Fourier transform infrared spectroscopy and UV-vis spectroscopy. Surface morphology reveals the smooth surface of these films (RMS: from 0.503 to 2.849 nm). The presence of obviously-broadened peaks for diffraction planes (111) suggests a presence of very tiny crystallites distributed along a preferred crystallographic orientation. Transmission electron microscopy investigations confirmed the formation of tiny crystallites due to the implantation of erbium ions. Due to the increase of nominal H concentration, the intensity of the broad absorbance from 190-260 nm increased.展开更多
Copper-nickel nanoparticle was directly prepared by flow-levitation method (FL) and sintered by vacuum sintering of powder (VSP) method. Several characterizations, such as transmission electron microscopy (TEM),...Copper-nickel nanoparticle was directly prepared by flow-levitation method (FL) and sintered by vacuum sintering of powder (VSP) method. Several characterizations, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal analysis (DTA), and energy-dispersive X-ray spectroscopy (EDX) were used to investigate the prepared nanostructures. The results of the study show that FL method could prepare high purity Cu-Ni nanocrystals of uniform spheres with size distribution between 20 and 90 nm. After sintering the bulk nanocrystalline copper-nickel has obvious thermal stability and the surface Webster hardness increases with the rising sintering temperature. At the temperature of 900 ℃, the specimen shows higher surface Webster hardness, which is about two times of traditional materials. When the sintering temperature arrives at 1 000 ℃ the relative density of bulk nanocrystals can reach 97.86 percent. In this paper, the variation tendency of porosity, phase and particles size of bulk along with the changing of sintering temperature have been studied.展开更多
Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas...Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 m A/cm^2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 ℃ and 4 h, respectively.展开更多
Tribological properties of non-hydrogenated diamond-like carbon (DLC) films were investigated under humid (RH=80%) and dry (RH=5%) air. These films were deposited by pulsed laser deposition (PLD) at different substrat...Tribological properties of non-hydrogenated diamond-like carbon (DLC) films were investigated under humid (RH=80%) and dry (RH=5%) air. These films were deposited by pulsed laser deposition (PLD) at different substrate temperatures. Tribological properties of DLC fabricated by PLD is not sensitive to the relative humidity of testing environment. Because of the unique growth mechanism of DLC pre- pared by PLD, DLC is of "soft-hard" double layers, having a very low friction coefficient and wear rate under humid atmosphere. The minimum coefficient and wear rate of film under humid circumstance are 0.045 and 5.94×10?10 mm3N-1m-1, respectively, just a little bit more than those under dry condition. The root means square roughness of film is less than 1 nm. The sp3 content of film grown at room tem- perature (RT) is 72%, and the sp3 content decreases with temperature. Raman spectrum shows that the micro-structure is amorphous network. The largest hardness and elastic modulus of film are 51 GPa and 350 GPa, respectively and they reduce with increase of deposition temperature too. Water contact angles on surface are more than 90° which indicates that films fabricated by PLD are hydrophobic with low surface energy.展开更多
A new hydrogen storage route of 3D nanoporous sodium borohydride (NPSB) generated by removing special atoms is proposed in this work. Three different size pores of NPSB-1 (7), NPSB-2 (10) and NPSB-3 (14) are presented...A new hydrogen storage route of 3D nanoporous sodium borohydride (NPSB) generated by removing special atoms is proposed in this work. Three different size pores of NPSB-1 (7), NPSB-2 (10) and NPSB-3 (14) are presented, and the hydrogen storage capacities of these NPSBs are simulated by employing a grand canonical Monte Carlo (GCMC) procedure for a temperature range of 77-298 K and a pressure range of 0.1-100 bar. The effects of pore diameter, temperature and pressure on the hydrogen adsorption have been examined. The results show that the adsorption of hydrogen decreases and increases with increasing temperature and hydrogen pressure, respectively. It also reflects that the hydrogen adsorption capacities at higher pressures are dependent on pore diameter, while independent of pore diameter at lower pressures.展开更多
基金The National Natural Science Foundation of China(No.51778133)the National Basic Research Program of China(973Program)(No.2015CB655102)+1 种基金the Fundamental Research Funds for the Central Universities(No.3212009403)the China Railway Project(No.2017G007-C)
文摘To explore the tensile property parameters in the structural design of bridge deck link slabs made by ecological high ductility cementitious composites (Eco-HDCC), the tensile properties of Eco-HDCC exposed to interactive freeze-thaw-carbonation cycles and single carbonation cycles were studied. The carbonation front of Eco-HDCC was determined by X-ray diffraction and differential scanning calorimetry-thermal gravimetric methods. Results indicate that the carbonation front of Eco-HDCC after interaction tests is deeper than that of Eco-HDCC after single carbonation tests. In addition, the ultimate tensile strength for Eco-HDCC shows an increasing trend after the interaction of 1 to 5 cycles compared with that of virgin specimens, while the ultimate tensile strength decreases after the interaction of 10 to 15 cycles. For single carbonation tests, the ultimate tensile strength of Eco-HDCC increases as cycles increase. After being subjected to interaction and single carbonation environments, both the ultimate tensile strain and tensile strain energy of Eco-HDCC decrease as cycles increase, and the decrease degrees of Eco-HDCC after interaction cycles are larger than those of Eco-HDCC after single carbonation. For general consideration, the tensile stress-strain relationship of Eco-HDCC after the interaction of 15 cycles can be adopted in the design of bridge deck link slabs for the purpose of safety.
基金Funded by the Fund of the Science and Technology on Plasma Physics Laboratory(No.9140C680501110C6803)
文摘Erbium dihydride thin films were prepared by pulsed laser deposition on Si(100) substrates using erbium target under different low hydrogen pressures. The properties of these films were examined by atomic force microscopy, X-ray diffractometer, transmission electron microscopy, and Fourier transform infrared spectroscopy and UV-vis spectroscopy. Surface morphology reveals the smooth surface of these films (RMS: from 0.503 to 2.849 nm). The presence of obviously-broadened peaks for diffraction planes (111) suggests a presence of very tiny crystallites distributed along a preferred crystallographic orientation. Transmission electron microscopy investigations confirmed the formation of tiny crystallites due to the implantation of erbium ions. Due to the increase of nominal H concentration, the intensity of the broad absorbance from 190-260 nm increased.
基金Supported by the National Natural Science Foundation of China(No.10804101)
文摘Copper-nickel nanoparticle was directly prepared by flow-levitation method (FL) and sintered by vacuum sintering of powder (VSP) method. Several characterizations, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal analysis (DTA), and energy-dispersive X-ray spectroscopy (EDX) were used to investigate the prepared nanostructures. The results of the study show that FL method could prepare high purity Cu-Ni nanocrystals of uniform spheres with size distribution between 20 and 90 nm. After sintering the bulk nanocrystalline copper-nickel has obvious thermal stability and the surface Webster hardness increases with the rising sintering temperature. At the temperature of 900 ℃, the specimen shows higher surface Webster hardness, which is about two times of traditional materials. When the sintering temperature arrives at 1 000 ℃ the relative density of bulk nanocrystals can reach 97.86 percent. In this paper, the variation tendency of porosity, phase and particles size of bulk along with the changing of sintering temperature have been studied.
基金Funded by the National High Technology Research and Development Program(863 Program)(No.2013AA050905),China Academy of Engineering Physics,Mianyang,China
文摘Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 m A/cm^2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 ℃ and 4 h, respectively.
文摘Tribological properties of non-hydrogenated diamond-like carbon (DLC) films were investigated under humid (RH=80%) and dry (RH=5%) air. These films were deposited by pulsed laser deposition (PLD) at different substrate temperatures. Tribological properties of DLC fabricated by PLD is not sensitive to the relative humidity of testing environment. Because of the unique growth mechanism of DLC pre- pared by PLD, DLC is of "soft-hard" double layers, having a very low friction coefficient and wear rate under humid atmosphere. The minimum coefficient and wear rate of film under humid circumstance are 0.045 and 5.94×10?10 mm3N-1m-1, respectively, just a little bit more than those under dry condition. The root means square roughness of film is less than 1 nm. The sp3 content of film grown at room tem- perature (RT) is 72%, and the sp3 content decreases with temperature. Raman spectrum shows that the micro-structure is amorphous network. The largest hardness and elastic modulus of film are 51 GPa and 350 GPa, respectively and they reduce with increase of deposition temperature too. Water contact angles on surface are more than 90° which indicates that films fabricated by PLD are hydrophobic with low surface energy.
基金the National Natural Science Foundation of China (Grant Nos. 11074176 and 10976019)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100181110080)
文摘A new hydrogen storage route of 3D nanoporous sodium borohydride (NPSB) generated by removing special atoms is proposed in this work. Three different size pores of NPSB-1 (7), NPSB-2 (10) and NPSB-3 (14) are presented, and the hydrogen storage capacities of these NPSBs are simulated by employing a grand canonical Monte Carlo (GCMC) procedure for a temperature range of 77-298 K and a pressure range of 0.1-100 bar. The effects of pore diameter, temperature and pressure on the hydrogen adsorption have been examined. The results show that the adsorption of hydrogen decreases and increases with increasing temperature and hydrogen pressure, respectively. It also reflects that the hydrogen adsorption capacities at higher pressures are dependent on pore diameter, while independent of pore diameter at lower pressures.