Neural networks, as an important computing model, have a wide application in artificial intelligence (AI) domain. From the perspective of computer science, such a computing model requires a formal description of its b...Neural networks, as an important computing model, have a wide application in artificial intelligence (AI) domain. From the perspective of computer science, such a computing model requires a formal description of its behaviors, particularly the relation between input and output. In addition, such specifications ought to be verified automatically. ReLU (rectified linear unit) neural networks are intensively used in practice. In this paper, we present ReLU Temporal Logic (ReTL), whose semantics is defined with respect to ReLU neural networks, which could specify value-related properties about the network. We show that the model checking algorithm for theΣ2∪Π2 fragment of ReTL, which can express properties such as output reachability, is decidable in EXPSPACE. We have also implemented our algorithm with a prototype tool, and experimental results demonstrate the feasibility of the presented model checking approach.展开更多
基金This work is supported by the National Natural Science Foundation of China under Grant No.61872371the Open Fund from the State Key Laboratory of High Performance Computing of China(HPCL)under Grant No.202001-07the Natural Key Research and Development Program of China under Grant No.2018YFB0204301.
文摘Neural networks, as an important computing model, have a wide application in artificial intelligence (AI) domain. From the perspective of computer science, such a computing model requires a formal description of its behaviors, particularly the relation between input and output. In addition, such specifications ought to be verified automatically. ReLU (rectified linear unit) neural networks are intensively used in practice. In this paper, we present ReLU Temporal Logic (ReTL), whose semantics is defined with respect to ReLU neural networks, which could specify value-related properties about the network. We show that the model checking algorithm for theΣ2∪Π2 fragment of ReTL, which can express properties such as output reachability, is decidable in EXPSPACE. We have also implemented our algorithm with a prototype tool, and experimental results demonstrate the feasibility of the presented model checking approach.