Transmission electron microscopy (TEM) was applied to investigate theevolution of dislocation configuration and strain induced precipitation behavior during relaxationprocess after deformation in Fe-Ni-Nb-Ti-C-B alloy...Transmission electron microscopy (TEM) was applied to investigate theevolution of dislocation configuration and strain induced precipitation behavior during relaxationprocess after deformation in Fe-Ni-Nb-Ti-C-B alloy. Experimental results indicate that thedislocation density is very high and distribute randornly before relaxation. As the relaxation timeincreasing, dislocation cells will form gradually by polygonization. The strain inducedprecipitation retards the progress. In the final relaxation stage, most dislocations get rid ofpinning of precipitates and the cells have developed into subgrains with large size.展开更多
基金The work was financially supported by National Key Basic Research and Development Program of China(No.G1998061507).]
文摘Transmission electron microscopy (TEM) was applied to investigate theevolution of dislocation configuration and strain induced precipitation behavior during relaxationprocess after deformation in Fe-Ni-Nb-Ti-C-B alloy. Experimental results indicate that thedislocation density is very high and distribute randornly before relaxation. As the relaxation timeincreasing, dislocation cells will form gradually by polygonization. The strain inducedprecipitation retards the progress. In the final relaxation stage, most dislocations get rid ofpinning of precipitates and the cells have developed into subgrains with large size.