Non-enzymatic electrochemical sensor was developed for estimation of low-level cholesterol.Polyindole/tungsten carbide(PIN/WC)nanocomposite was synthesized and used as an electroactive material to develop low-cost mod...Non-enzymatic electrochemical sensor was developed for estimation of low-level cholesterol.Polyindole/tungsten carbide(PIN/WC)nanocomposite was synthesized and used as an electroactive material to develop low-cost modified stainless steel plate electrode(SSPE).Surface morphology of developed electrode was characterized by scanning electron microscopy.Electrochemical behavior of cholesterol was investigated through electron impedance spectroscopy,potentiodynamic polarization and cyclic voltammetry in 1-M KOH electrolytic solution.The quantification of cholesterol was studied by square wave voltammetry and differential pulse voltammetry.The calibration plots between the cholesterol concentration and peak current were in linear relation with limit of detection of 1.23×10^(−6) mol L^(−1).The overall result reveals that developed PIN/WC/SSPE electrode has excellent performance for trace-level cholesterol estimation and can be further employed for cholesterol monitoring in blood serum samples.展开更多
文摘Non-enzymatic electrochemical sensor was developed for estimation of low-level cholesterol.Polyindole/tungsten carbide(PIN/WC)nanocomposite was synthesized and used as an electroactive material to develop low-cost modified stainless steel plate electrode(SSPE).Surface morphology of developed electrode was characterized by scanning electron microscopy.Electrochemical behavior of cholesterol was investigated through electron impedance spectroscopy,potentiodynamic polarization and cyclic voltammetry in 1-M KOH electrolytic solution.The quantification of cholesterol was studied by square wave voltammetry and differential pulse voltammetry.The calibration plots between the cholesterol concentration and peak current were in linear relation with limit of detection of 1.23×10^(−6) mol L^(−1).The overall result reveals that developed PIN/WC/SSPE electrode has excellent performance for trace-level cholesterol estimation and can be further employed for cholesterol monitoring in blood serum samples.