BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but...BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.展开更多
Tumor angiogenesis is the uncontrolled growth of blood vessels in tumors,serving to supply nutrients and oxygen,and remove metabolic wastes. Kaposi’s sarcoma (KS),a multifocal angioproliferative disorder characterize...Tumor angiogenesis is the uncontrolled growth of blood vessels in tumors,serving to supply nutrients and oxygen,and remove metabolic wastes. Kaposi’s sarcoma (KS),a multifocal angioproliferative disorder characterized by spindle cell proliferation,neo-angiogenesis,inflammation,and edema,is associated with infection by Kaposi's sarcoma-associated herpesvirus (KSHV). Recent studies indicate that KSHV infection directly promotes angiogenesis and inflammation through an autocrine and paracrine mechanism by inducing pro-angiogenic and pro-inflammatory cytokines. Many of these cytokines are also expressed in KS lesions,implicating a direct role of KSHV in the pathogenesis of this malignancy. Several KSHV genes are involved in KSHV-induced angiogenesis. These studies have provided insights into the pathogenesis of KS,and identified potential therapeutic targets for this malignancy.展开更多
The effects of Cr contents(0.3 and 1.0 wt.%)and isothermal holding temperatures(400,440,and 480℃)on the microstructure evolution and properties of complex phase steel with high formability(CH steel)were investigated ...The effects of Cr contents(0.3 and 1.0 wt.%)and isothermal holding temperatures(400,440,and 480℃)on the microstructure evolution and properties of complex phase steel with high formability(CH steel)were investigated using dilatometry,scanning electron microscopy,transmission electron microscopy(TEM),and X-ray diffraction.The results show that the microstructures of CH steel with 0.3 wt.%Cr are ferrite,granular bainite,martensite,and retained austenite,while no ferrite is observed in the microstructure of CH steel with 1.0 wt.%Cr in the same process.Cr promotes the precipitation of(Nb,Ti)C in the high-temperature austenite region through theoretical calculations and TEM observations.Cr retards the bainite transformation and refines the grain size of CH steel.Furthermore,as isothermal holding temperature increases from 400 to 480℃,the bainite and retained austenite fractions of two CH steels decrease,while the martensite fraction increases in the steels after final quenching.Consequently,the strength has an increasing tendency and the total elongation has a decreasing tendency with increasing isothermal temperature.展开更多
文摘BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences Chinese Academy of Sciences (0702121YJ1)Open Research Fund Program of the State Key Laboratory of Virology of China (2007013)+1 种基金A Type B Outstanding Abroad Young Scientist Award (30328001) from the National Science Foundation of Chinagrants from the National Institutes of Health (CA096512,CA124332,CA119889 and DE017333)
文摘Tumor angiogenesis is the uncontrolled growth of blood vessels in tumors,serving to supply nutrients and oxygen,and remove metabolic wastes. Kaposi’s sarcoma (KS),a multifocal angioproliferative disorder characterized by spindle cell proliferation,neo-angiogenesis,inflammation,and edema,is associated with infection by Kaposi's sarcoma-associated herpesvirus (KSHV). Recent studies indicate that KSHV infection directly promotes angiogenesis and inflammation through an autocrine and paracrine mechanism by inducing pro-angiogenic and pro-inflammatory cytokines. Many of these cytokines are also expressed in KS lesions,implicating a direct role of KSHV in the pathogenesis of this malignancy. Several KSHV genes are involved in KSHV-induced angiogenesis. These studies have provided insights into the pathogenesis of KS,and identified potential therapeutic targets for this malignancy.
基金The authors gratefully acknowledge the support from the Key Research and Development Plan of Shandong Province(No.2019TSLH0103)the New Energy Automobile Material Production and Application Demonstration Platform Project(No.TC180A6MR-1)Guangxi Innovation-Driven Development Special Fund Project(No.AA18242012).
文摘The effects of Cr contents(0.3 and 1.0 wt.%)and isothermal holding temperatures(400,440,and 480℃)on the microstructure evolution and properties of complex phase steel with high formability(CH steel)were investigated using dilatometry,scanning electron microscopy,transmission electron microscopy(TEM),and X-ray diffraction.The results show that the microstructures of CH steel with 0.3 wt.%Cr are ferrite,granular bainite,martensite,and retained austenite,while no ferrite is observed in the microstructure of CH steel with 1.0 wt.%Cr in the same process.Cr promotes the precipitation of(Nb,Ti)C in the high-temperature austenite region through theoretical calculations and TEM observations.Cr retards the bainite transformation and refines the grain size of CH steel.Furthermore,as isothermal holding temperature increases from 400 to 480℃,the bainite and retained austenite fractions of two CH steels decrease,while the martensite fraction increases in the steels after final quenching.Consequently,the strength has an increasing tendency and the total elongation has a decreasing tendency with increasing isothermal temperature.