Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was great...Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated GTL shifted towards a longer wavelength by 55 nm, which could be ascribed to the strong conjugation of GTL supramolecular order structure (J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. The microstructures of the resulting intercalation compounds could be successfully controlled by varying the amount of dye loaded as evidenced by the basal spacing of the intercalation compounds. The intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and thermal cis-to-trans reaction. FTIR proved the successful intercalation of GTL into the silicate layer.展开更多
基金This work was financially supported by the Science Council of Sichuan Province, China (No.03JY029-026-2).
文摘Montmorillonite/cationic azobenzene dye (GTL) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure GTL, the thermal stability of the intercalated GTL was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated GTL shifted towards a longer wavelength by 55 nm, which could be ascribed to the strong conjugation of GTL supramolecular order structure (J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. The microstructures of the resulting intercalation compounds could be successfully controlled by varying the amount of dye loaded as evidenced by the basal spacing of the intercalation compounds. The intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and thermal cis-to-trans reaction. FTIR proved the successful intercalation of GTL into the silicate layer.