期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多尺度的生物医用高聚物降解强度模型
1
作者 张桃红 金戈愉 +4 位作者 侯斌斌 赵玉凤 周邵楠 曹怒安 张德政 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2018年第7期121-125,共5页
生物医用高聚物由于其良好的性能与降解性,在医学上有广泛的应用前景。降解过程中的强度变化直接影响到应用情况,而降解过程的复杂性使得强度预测困难。文中在分析强度影响因素的前提下,首先由公式推导证明代表性强度模型的不适用性,然... 生物医用高聚物由于其良好的性能与降解性,在医学上有广泛的应用前景。降解过程中的强度变化直接影响到应用情况,而降解过程的复杂性使得强度预测困难。文中在分析强度影响因素的前提下,首先由公式推导证明代表性强度模型的不适用性,然后在生物医用高聚物的降解多尺度模型基础上提出针对降解变化过程中出现的异质相的异相强度模型,不同相采用不同的强度公式,并与多尺度模型耦合计算,计算结果与实验数据拟合得很好,表明文中提出的方法正确可行。 展开更多
关键词 生物医用高聚物 降解建模 强度模型 多尺度模型 多尺度强度模型
下载PDF
Text Feature Extraction and Classification Based on Convolutional Neural Network(CNN)
2
作者 taohong zhang Cunfang Li +3 位作者 Nuan Cao Rui Ma ShaoHua zhang Nan Ma 《国际计算机前沿大会会议论文集》 2017年第1期119-121,共3页
With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views a... With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper. 展开更多
关键词 Convolutional NEURAL network(CNN) TEXT FEATURE EXTRACTION CLASS operation
下载PDF
Degradation modeling of degradable copolymers for biomimetic scaffolds
3
作者 taohong zhang Yue GAO +2 位作者 Lingling ZHU Qingfeng ZENG Ming ZHOU 《Friction》 SCIE CSCD 2020年第3期594-603,共10页
Biomimetic scaffolds provide a suitable growth environment for tissue engineering and demonstrate good potential for application in biomedical fields.Different-sized copolymerized biomimetic scaffolds degrade differen... Biomimetic scaffolds provide a suitable growth environment for tissue engineering and demonstrate good potential for application in biomedical fields.Different-sized copolymerized biomimetic scaffolds degrade differently,and the degradation rate is affected by the copolymerization ratio.The study of the degradation property is the foundational research necessary for realizing individualized biomimetic scaffold design.The degradation performance of polyesters with different copolymerization ratios has been widely reported;however,the modeling of this performance has been rarely reported.In this research,the degradation of copolymers was studied with multi-scale modeling,in which the copolymers were dispersed in a cellular manner,the chain break time was simulated,and the chain selection was based on the Monte Carlo(MC)algorithm.The probability model of the copolymer's chain break position was established as a//roulette,/model,whose probability values were estimated by the calculation of the potential energy difference at different chain break positions by molecular dynamics that determined the position of chain shear,thereby fully realizing the simulation of the chain micro-break process.The diffusion of the oligomers was then calculated using the macro diffusion equation,and the degradation process of the copolymer was simulated by three-scale coupling calculations.The calculation results were in good agreement with the experimental data,demonstrating the effectiveness of the proposed method. 展开更多
关键词 copolymer for biomimetic scaffolds copolymerization ratio degradation modeling multi-scale model probability model for chain break location
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部