期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PTMOT: A Probabilistic Multiple Object Tracker Enhanced by Tracklet Confidence for Autonomous Driving 被引量:1
1
作者 Kun Jiang Yining Shi +2 位作者 taohua zhou Mengmeng Yang Diange Yang 《Automotive Innovation》 EI CSCD 2022年第3期260-271,共12页
Real driving scenarios,due to occlusions and disturbances,provide disordered and noisy measurements,which makes the task of multi-object tracking quite challenging.Conventional approach is to find deterministic data a... Real driving scenarios,due to occlusions and disturbances,provide disordered and noisy measurements,which makes the task of multi-object tracking quite challenging.Conventional approach is to find deterministic data association;however,it has unstable performance in high clutter density.This paper proposes a novel probabilistic tracklet-enhanced multiple object tracker(PTMOT),which integrates Poisson multi-Bernoulli mixture(PMBM)filter with confidence of tracklets.The proposed method is able to realize efficient and robust probabilistic association for 3D multi-object tracking(MOT)and improve the PMBM filter’s continuity by smoothing single target hypothesis with global hypothesis.It consists of two key parts.First,the PMBM tracker based on sets of tracklets is implemented to realize probabilistic fusion of disordered measure-ments.Second,the confidence of tracklets is smoothed through a smoothing-while-filtering approach.Extensive MOT tests on nuScenes tracking dataset demonstrate that the proposed method achieves superior performance in different modalities. 展开更多
关键词 3D multi-object tracking Random finite set Probabilistic association Tracklet confidence smoothing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部