Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐do...Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐doped NiOOH)catalyst via in situ electrochemical reconstruction of a NiCu alloy.The introduction of Cu dopants increases the specific surface area and more defect sites,as well as forms high‐valence Ni sites.The Cu‐doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm^(–2)at 1.72 V versus reversible hydrogen electrode,high Faradic efficiencies for acetate production(>98%),and excellent electrochemical stability.Our work suggests an attractive route of designing non‐noble metal based electrocatalysts for ethanol oxidation.展开更多
文摘Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐doped NiOOH)catalyst via in situ electrochemical reconstruction of a NiCu alloy.The introduction of Cu dopants increases the specific surface area and more defect sites,as well as forms high‐valence Ni sites.The Cu‐doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm^(–2)at 1.72 V versus reversible hydrogen electrode,high Faradic efficiencies for acetate production(>98%),and excellent electrochemical stability.Our work suggests an attractive route of designing non‐noble metal based electrocatalysts for ethanol oxidation.