This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where p...This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.展开更多
This paper presents a method of state estimation for uncertain nonlinear systems described by multiple models approach. The uncertainties, supposed as norm bounded type, are caused by some parameters' variations of t...This paper presents a method of state estimation for uncertain nonlinear systems described by multiple models approach. The uncertainties, supposed as norm bounded type, are caused by some parameters' variations of the nonlinear system. Linear matri~ inequalities (LMIs) have been established in order to ensure the stability conditions of the multiple observer which lead to determine the estimation gains. A sliding mode gain has been added in order to compensate the uncertainties. Numerical simulations through a state space model of a real process have been realized to show the robustness of the synthesized observer.展开更多
文摘This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.
文摘This paper presents a method of state estimation for uncertain nonlinear systems described by multiple models approach. The uncertainties, supposed as norm bounded type, are caused by some parameters' variations of the nonlinear system. Linear matri~ inequalities (LMIs) have been established in order to ensure the stability conditions of the multiple observer which lead to determine the estimation gains. A sliding mode gain has been added in order to compensate the uncertainties. Numerical simulations through a state space model of a real process have been realized to show the robustness of the synthesized observer.