期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Smart prediction of liquefaction-induced lateral spreading
1
作者 Muhammad Nouman Amjad Raja tarek abdoun Waleed El-Sekelly 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2310-2325,共16页
The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(... The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively. 展开更多
关键词 Lateral spreading Intelligent modeling Gene expression programming(GEP) Closed-form solution Feature importance
下载PDF
Centrifuge modeling of PGD response of buried pipe 被引量:5
2
作者 Michael O'Rourke Vikram Gadicherla tarek abdoun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期69-73,共5页
A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experi... A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results. 展开更多
关键词 EARTHQUAKES buried pipe permanent ground deformation centrifuge models fault crossings lifeline earthquake engineering
下载PDF
Physical modeling and visualization of soil liquefaction under high confining stress 被引量:5
3
作者 Lenart González tarek abdoun +2 位作者 Mourad Zeghal Vivian Kallou Michael K. Sharp 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期47-57,共11页
The mechanisms of seismically-induced liquefaction of granular soils underhigh confining stresses are still not fully understood. Evaluation of these mechanisms is generallybased on extrapolation of observed behavior ... The mechanisms of seismically-induced liquefaction of granular soils underhigh confining stresses are still not fully understood. Evaluation of these mechanisms is generallybased on extrapolation of observed behavior at shallow depths. Three centrifuge model tests wereconducted at RPI's experimental facility to investigate the effects of confining stresses on thedynamic response of a deep horizontal deposit of saturated sand. Liquefaction was observed at highconfining stresses in each of the tests. A system identification procedure was used to estimate theassociated shear strain and stress time histories. These histories revealed a response marked byshear strength degradation and dilative patterns. The recorded accelerations and pore pressures wereemployed to generate visual animations of the models. These visualizations revealed a liquefactionfront traveling downward and leading to large shear strains and isolation of upper soil layers. 展开更多
关键词 centrifuge modeling high confining stress LIQUEFACTION SYSTEMIDENTIFICATION VISUALIZATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部