The paper considers the theoretical basics and the specific mathematical techniques having been developed for solving the tasks of the stochastic data analysis within the Rice statistical model in which the output sig...The paper considers the theoretical basics and the specific mathematical techniques having been developed for solving the tasks of the stochastic data analysis within the Rice statistical model in which the output signal’s amplitude is composed as a sum of the sought-for initial value and a random Gaussian noise. The Rician signal’s characteristics such as the average value and the noise dispersion have been shown to depend upon the Rice distribution’s parameters nonlinearly what has become a prerequisite for the development of a new approach to the stochastic Rician data analysis implying the joint signal and noise accurate evaluation. The joint computing of the Rice distribution’s parameters allows efficient reconstruction of the signal’s in-formative component against the noise background. A meaningful advantage of the proposed approach consists in the absence of restrictions connected with any a priori suppositions inherent to the traditional techniques. The results of the numerical experiments are provided confirming the efficiency of the elaborated approach to stochastic data analysis within the Rice statistical model.展开更多
文摘The paper considers the theoretical basics and the specific mathematical techniques having been developed for solving the tasks of the stochastic data analysis within the Rice statistical model in which the output signal’s amplitude is composed as a sum of the sought-for initial value and a random Gaussian noise. The Rician signal’s characteristics such as the average value and the noise dispersion have been shown to depend upon the Rice distribution’s parameters nonlinearly what has become a prerequisite for the development of a new approach to the stochastic Rician data analysis implying the joint signal and noise accurate evaluation. The joint computing of the Rice distribution’s parameters allows efficient reconstruction of the signal’s in-formative component against the noise background. A meaningful advantage of the proposed approach consists in the absence of restrictions connected with any a priori suppositions inherent to the traditional techniques. The results of the numerical experiments are provided confirming the efficiency of the elaborated approach to stochastic data analysis within the Rice statistical model.