A surface-hardening treatment for AZ31 magnesium alloy using an atmospheric-pressure plasma jet(APPJ)at room temperature was developed.Magnesium is a potential engineering material because it is lightweight;however,ma...A surface-hardening treatment for AZ31 magnesium alloy using an atmospheric-pressure plasma jet(APPJ)at room temperature was developed.Magnesium is a potential engineering material because it is lightweight;however,magnesium alloys are difficult to heat-treat because of their low flaming temperature.Magnesium alloy specimens were irradiated with a localized atmospheric-pressure plasma jet generated by dielectric-barrier discharge for 180 s in air.The APPJ excited oxygen and nitrogen molecules in the ambient air,resulting in the formation of an oxynitrided layer;oxygen and nitrogen diffusion layer,on the surface of the magnesium alloy.The hardness and elemental distribution for the treated surface were examined.The top surface of the APPJ-treated magnesium alloy achieved a maximum hardness of 108 HV,which was~1.7 times greater than that of the untreated surface.Elemental analysis using an electron-probe microanalyzer revealed strong oxygen and nitrogen signals corresponding to the hardened region of the magnesium alloy,meaning that the hardness increased as a result of the formation of the oxynitrided layer.The proposed APPJ treatment is a promising approach for locally hardening magnesium alloys without using a heat treatment.展开更多
基金the Tanikawa Fund Promotion of Thermal Technology and the Light Metal Education Foundation。
文摘A surface-hardening treatment for AZ31 magnesium alloy using an atmospheric-pressure plasma jet(APPJ)at room temperature was developed.Magnesium is a potential engineering material because it is lightweight;however,magnesium alloys are difficult to heat-treat because of their low flaming temperature.Magnesium alloy specimens were irradiated with a localized atmospheric-pressure plasma jet generated by dielectric-barrier discharge for 180 s in air.The APPJ excited oxygen and nitrogen molecules in the ambient air,resulting in the formation of an oxynitrided layer;oxygen and nitrogen diffusion layer,on the surface of the magnesium alloy.The hardness and elemental distribution for the treated surface were examined.The top surface of the APPJ-treated magnesium alloy achieved a maximum hardness of 108 HV,which was~1.7 times greater than that of the untreated surface.Elemental analysis using an electron-probe microanalyzer revealed strong oxygen and nitrogen signals corresponding to the hardened region of the magnesium alloy,meaning that the hardness increased as a result of the formation of the oxynitrided layer.The proposed APPJ treatment is a promising approach for locally hardening magnesium alloys without using a heat treatment.