A fluid dynamic traffic flow model based on a non-linear velocity-density function is considered. The model provides a quasi-linear first order hyperbolic partial differential equation which is appended with initial a...A fluid dynamic traffic flow model based on a non-linear velocity-density function is considered. The model provides a quasi-linear first order hyperbolic partial differential equation which is appended with initial and boundary data and turns out an initial boundary value problem (IBVP). A first order explicit finite difference scheme of the IBVP known as Lax-Friedrich’s scheme for our model is presented and a well-posedness and stability condition of the scheme is established. The numerical scheme is implemented in order to perform the numerical features of error estimation and rate of convergence. Fundamental diagram, density, velocity and flux profiles are presented.展开更多
文摘A fluid dynamic traffic flow model based on a non-linear velocity-density function is considered. The model provides a quasi-linear first order hyperbolic partial differential equation which is appended with initial and boundary data and turns out an initial boundary value problem (IBVP). A first order explicit finite difference scheme of the IBVP known as Lax-Friedrich’s scheme for our model is presented and a well-posedness and stability condition of the scheme is established. The numerical scheme is implemented in order to perform the numerical features of error estimation and rate of convergence. Fundamental diagram, density, velocity and flux profiles are presented.