It is with the aim of solving the problem of generating large quantities of effluents from palm oil production in the littoral region of Cameroon that this study was carried out with the general objective of reducing ...It is with the aim of solving the problem of generating large quantities of effluents from palm oil production in the littoral region of Cameroon that this study was carried out with the general objective of reducing the pollutant load of these effluents by using bacteria. To this end, raw palm oil mill wastewater samples were taken for their characterization by evaluating the in-situ (Temperature, pH and (CND) Conductivity) and ex-situ (SS (suspended solid), COD (chemical oxygen demand), BOD (biological oxygen demand) and O/F (oil and fat)) parameters. In addition, bacterial isolation and screening were carried out from samples of contaminated soil based on the production of lipolytic enzymes, the degradation of oils and fats and the reduction of the pollutant load. Results revealed that 28 isolates were able to reduce the pollution parameters of palm oil mill effluents of which D17, D22 and D23 seemed to be the best purifying isolates. The characterization of the POME (palm oil mill effluent), basing the temperature, pH, CND, O/F, SS, BOD and COD showed us values greater than the recommended rate. Partial characterization of these isolates revealed that D17 and D23 are bacteria that could reduce the polluting parameters of the effluents belonged to the <i>Bacillus</i> sp. genus and D22 to the <i>Acinetobacter</i> sp. genus. These results are satisfactory and the bacteria strains obtained could be used in bioremediation.展开更多
文摘It is with the aim of solving the problem of generating large quantities of effluents from palm oil production in the littoral region of Cameroon that this study was carried out with the general objective of reducing the pollutant load of these effluents by using bacteria. To this end, raw palm oil mill wastewater samples were taken for their characterization by evaluating the in-situ (Temperature, pH and (CND) Conductivity) and ex-situ (SS (suspended solid), COD (chemical oxygen demand), BOD (biological oxygen demand) and O/F (oil and fat)) parameters. In addition, bacterial isolation and screening were carried out from samples of contaminated soil based on the production of lipolytic enzymes, the degradation of oils and fats and the reduction of the pollutant load. Results revealed that 28 isolates were able to reduce the pollution parameters of palm oil mill effluents of which D17, D22 and D23 seemed to be the best purifying isolates. The characterization of the POME (palm oil mill effluent), basing the temperature, pH, CND, O/F, SS, BOD and COD showed us values greater than the recommended rate. Partial characterization of these isolates revealed that D17 and D23 are bacteria that could reduce the polluting parameters of the effluents belonged to the <i>Bacillus</i> sp. genus and D22 to the <i>Acinetobacter</i> sp. genus. These results are satisfactory and the bacteria strains obtained could be used in bioremediation.