Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression w...Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.展开更多
Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stati...Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system.展开更多
文摘Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.
文摘Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system.