Time to digital converter(TDC)is a key block for time-gated single photon avalanche diode(SPAD)arrays for Raman spectroscopy that applicable in the agricultural products and food analysis.In this paper a new dual slop...Time to digital converter(TDC)is a key block for time-gated single photon avalanche diode(SPAD)arrays for Raman spectroscopy that applicable in the agricultural products and food analysis.In this paper a new dual slope time to digital converter that employs the time to voltage conversion and integrating techniques for digitizing the time interval input signals is presented.The reference clock frequency of the TDC is 100 MHz and the input range is theoretically unlimited.The proposed converter features high accuracy,very small average error and high linear range.Also this converter has some advantages such as low circuit complexity,low power consumption and low sensitive to the temperature,power supply and process changes(PVT)compared with the time to digital converters that used preceding conversion techniques.The proposed converter uses an indirect time to digital conversion method.Therefore,our converter has the appropriate linearity without extra elements.In order to evaluate the proposed idea,an integrating time to digital converter is designed in 0.18 lm CMOS technology and was simulated by Hspice.Comparison of the theoretical and simulation results confirms the proposed TDC operation;therefore,the proposed converter is very convenient for applications which have average speed and low variations in the signal amplitude such as biomedical signals.展开更多
文摘Time to digital converter(TDC)is a key block for time-gated single photon avalanche diode(SPAD)arrays for Raman spectroscopy that applicable in the agricultural products and food analysis.In this paper a new dual slope time to digital converter that employs the time to voltage conversion and integrating techniques for digitizing the time interval input signals is presented.The reference clock frequency of the TDC is 100 MHz and the input range is theoretically unlimited.The proposed converter features high accuracy,very small average error and high linear range.Also this converter has some advantages such as low circuit complexity,low power consumption and low sensitive to the temperature,power supply and process changes(PVT)compared with the time to digital converters that used preceding conversion techniques.The proposed converter uses an indirect time to digital conversion method.Therefore,our converter has the appropriate linearity without extra elements.In order to evaluate the proposed idea,an integrating time to digital converter is designed in 0.18 lm CMOS technology and was simulated by Hspice.Comparison of the theoretical and simulation results confirms the proposed TDC operation;therefore,the proposed converter is very convenient for applications which have average speed and low variations in the signal amplitude such as biomedical signals.