期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance comparison of novel chemical agents in improving oil recovery from tight sands through spontaneous imbibition 被引量:5
1
作者 Hai Huang tayfun babadagli +1 位作者 Xin Chen Huazhou Andy Li 《Petroleum Science》 SCIE CAS CSCD 2020年第2期409-418,共10页
Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sand... Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sands after fracturing.The chemical agents added to the injected water can alter the interfacial properties,which could help further enhance the oil recovery by spontaneous imbibition.This study explores the possibility of using novel chemicals to enhance oil recovery from tight sands via spontaneous imbibition.We experimentally examine the effects of more than ten different chemical agents on spontaneous imbibition,including a cationic surfactant(C12 TAB),two anionic surfactants(0242 and 0342),an ionic liquid(BMMIM BF4),a high pH solution(NaBO2),and a series of house-made deep eutectic solvents(DES3-7,9,11,and 14).The interfacial tensions(IFT)between oil phase and some chemical solutions are also determined.Experimental results indicate that both the ionic liquid and cationic surfactant used in this study are detrimental to spontaneous imbibition and decrease the oil recovery from tight sands,even though cationic surfactant significantly decreases the oil-water IFT while ionic liquid does not.The high pH NaBO2 solution does not demonstrate significant effect on oil recovery improvement and IFT reduction.The anionic surfactants(O242 and O342)are effective in enhancing oil recovery from tight sands through oil-water IFT reduction and emulsification effects.The DESs drive the rock surface to be more water-wet,and a specific formulation(DES9)leads to much improvement on oil recovery under counter-current imbibition condition.This preliminary study would provide some knowledge about how to optimize the selection of chemicals for improving oil recovery from tight reservoirs. 展开更多
关键词 SPONTANEOUS IMBIBITION NOVEL chemical agent Water FLOODING TIGHT SANDS
下载PDF
Stabilization of nickel nanoparticle suspensions with the aid of polymer and surfactant: static bottle tests and dynamic micromodel flow tests 被引量:1
2
作者 Siyuan Yi tayfun babadagli Huazhou Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1014-1024,共11页
Nickel nanoparticles can work as catalyst for the aquathermolysis reactions between water and heavy oil.A homogeneous and stable suspension is needed to carry the nickel nanoparticles into deeper reservoirs.This study... Nickel nanoparticles can work as catalyst for the aquathermolysis reactions between water and heavy oil.A homogeneous and stable suspension is needed to carry the nickel nanoparticles into deeper reservoirs.This study conducts a detailed investigation on how to achieve stabilized nickel nanoparticle suspensions with the use of surfactant and polymer.To stabilize the nickel nanoparticle suspension,three surfactants including sodium dodecyl sulfate,cationic surfactant cetyltrimethylammonium bromide and polyoxyalkalene amine derivative(Hypermer) along with xanthan gum polymer were introduced into the nickel nanoparticle suspension.Static stability tests and zeta potential measurements were conducted to determine the polymer/surfactant recipes yielding the most stable nickel nanoparticle suspensions.Dynamic micromodel flow tests were also conducted on three suspensions to reveal how the nickel nanoparticles would travel and distribute in porous media.Test results showed that when the injection was initiated,most nickel nanoparticles were able to pass through the gaps between the sand grains and produced in the outlet of the micromodel;only a small number of the nickel nanoparticles were attached to the grain surface.A higher nickel concentration in the suspension may lead to agglomeration of nickel nanoparticles in porous media,while a lower concentration can mitigate this agglomeration.Moreover,clusters tended to form when the nickel nanoparticle suspension carried an electrical charge opposite to that of the porous media.Follow-up waterflood was initiated after the nanofluid injection.It was found that the waterflood could not flush away the nanoparticles that were remaining in the micromodel. 展开更多
关键词 Aquathermolysis reactions Nickel nanoparticles Polymer surfactant Suspension stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部