Old world bluestems (Bothriochloa spp.) have been successfully introduced as grasses for livestock forage in the semiarid Texas High Plains. Questions remain, however, on effects of these grasses on soil resources. We...Old world bluestems (Bothriochloa spp.) have been successfully introduced as grasses for livestock forage in the semiarid Texas High Plains. Questions remain, however, on effects of these grasses on soil resources. We tested the hypothesis that differences in grass species produce differences in soil properties important to crop growth and useful in selecting the optimum species for the Southern High Plains of Texas. Three old world bluestem (Bothriochloa) species [C.E. Hubbard ‘Caucasian’, B. caucasica (Trin.);‘WW Spar’, B. ischaemum (L.) Keng.var ischaemum (Hack.);and S.T. Blake ‘WW-B Dahl’, B. bladhii (Retz)] were grown in a randomized complete block design, with three replications, for nine years on a clay loam soil near Lubbock, Texas. Soil samples were collected in the ninth year to determine soil texture, wet aggregate stability, bulk density (BD), soil organic carbon (SOC), particulate organic carbon (POC), and soil strength as measured by the cone pentrometer. The grass species differed in their above-ground biomass and below- ground root production. In the ninth year of production, Bothriochloa caucasica and B. bladhii produced about twice the above-ground biomass with about 25% fewer roots than B. ischaemum. Soils where B. caucasica was grown had the highest BD (1.36 Mg m–3) and B. ischaemum had the lowest (1.31 Mg m–3). The soil in which B. ischaemum was growing had a lower BD, greatest root biomass, organic matter content, and aggregate stability suggesting superior soil quality for agricultural production. The species B. bladhii, however, often exhibited soil properties that were similar to both other species tested. Since Bothriochloa bladhii had superior or similar soil properties for plant growth among the species tested and has been shown to be higher in forage quality, animal performance, and carrying capacity than the other species, it appears to be the best choice among these three species to optimize both animal performance and desirable soil properties.展开更多
文摘Old world bluestems (Bothriochloa spp.) have been successfully introduced as grasses for livestock forage in the semiarid Texas High Plains. Questions remain, however, on effects of these grasses on soil resources. We tested the hypothesis that differences in grass species produce differences in soil properties important to crop growth and useful in selecting the optimum species for the Southern High Plains of Texas. Three old world bluestem (Bothriochloa) species [C.E. Hubbard ‘Caucasian’, B. caucasica (Trin.);‘WW Spar’, B. ischaemum (L.) Keng.var ischaemum (Hack.);and S.T. Blake ‘WW-B Dahl’, B. bladhii (Retz)] were grown in a randomized complete block design, with three replications, for nine years on a clay loam soil near Lubbock, Texas. Soil samples were collected in the ninth year to determine soil texture, wet aggregate stability, bulk density (BD), soil organic carbon (SOC), particulate organic carbon (POC), and soil strength as measured by the cone pentrometer. The grass species differed in their above-ground biomass and below- ground root production. In the ninth year of production, Bothriochloa caucasica and B. bladhii produced about twice the above-ground biomass with about 25% fewer roots than B. ischaemum. Soils where B. caucasica was grown had the highest BD (1.36 Mg m–3) and B. ischaemum had the lowest (1.31 Mg m–3). The soil in which B. ischaemum was growing had a lower BD, greatest root biomass, organic matter content, and aggregate stability suggesting superior soil quality for agricultural production. The species B. bladhii, however, often exhibited soil properties that were similar to both other species tested. Since Bothriochloa bladhii had superior or similar soil properties for plant growth among the species tested and has been shown to be higher in forage quality, animal performance, and carrying capacity than the other species, it appears to be the best choice among these three species to optimize both animal performance and desirable soil properties.