The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solutio...The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solution of this equation is given in a general case. It is shown that for the limit values of the derivative index ,β, i.e. when β = 0 or β = 1, the general solution gives rise to classical solutions of hyperbolic and parabolic equations.展开更多
文摘The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solution of this equation is given in a general case. It is shown that for the limit values of the derivative index ,β, i.e. when β = 0 or β = 1, the general solution gives rise to classical solutions of hyperbolic and parabolic equations.